DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)

Hong ZHANG, Xiao-dong LI, Yong-jian TANG

PDF(211 KB)
PDF(211 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 231-235. DOI: 10.1007/s11467-011-0185-0
RESEARCH ARTICLE
RESEARCH ARTICLE

DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)

Author information +
History +

Abstract

The interactions of dihydrogen with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2) were studied by means of density functional theory (DFT) calculation. For all the complexes considered, each bonded lithium atom can adsorb up to five H2 molecules with the mean binding energy of 0.59 eV/H2 molecule. The interactions can be attributed to the charge transfer from the H2 bonding orbitals to the Li 2s orbitals. The kinetic stability of these hydrogen-covered organolithium molecules is discussed in terms of the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The results indicate that these organiclithium structures can perhaps be used as building units for potential hydrogen storage materials.

Keywords

adsorption / density functional calculations / organolithium molecule / hydrogen storage

Cite this article

Download citation ▾
Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2). Front. Phys., 2011, 6(2): 231‒235 https://doi.org/10.1007/s11467-011-0185-0

References

[1]
http://www.eere.energy.gov/hydrogenandfuelcells
[2]
S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today, 2007, 120(3-4): 246
CrossRef ADS Google scholar
[3]
E. Klontzas, A. Mavrandonakis, G. E. Froudakis, Y. Carissan, and W. Klopper, J. Phys. Chem. C, 2007, 111: 13635
CrossRef ADS Google scholar
[4]
Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef ADS Google scholar
[5]
M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Phys. Rev. Lett., 2008, 100(20): 206806
CrossRef ADS Google scholar
[6]
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, J. Chem. Theory Comput., 2009, 5: 374
CrossRef ADS Google scholar
[7]
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944
CrossRef ADS Google scholar
[8]
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon, 2001, 39(15): 2291
CrossRef ADS Google scholar
[9]
S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B, 2005, 72(15): 155404
CrossRef ADS Google scholar
[10]
G. Wilkinson, F. G. A. Stone, and E. W. Abel, Comprehensive Organometallic Chemistry, New York: Pergamon, 1982
[11]
J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97(5): 1303
CrossRef ADS Google scholar
[12]
D. Braga, P. J. Dyson, F. Grepioni, and B. F. G. Johnson, Chem. Rev., 1994, 94(6): 1585
CrossRef ADS Google scholar
[13]
T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, and K. Kaya, Organometallics, 1999, 18(8): 1430
CrossRef ADS Google scholar
[14]
K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, and K. Kaya, J. Phys. Chem., 1995, 99(10): 3053
CrossRef ADS Google scholar
[15]
T. Yasuike, A. Nakajima, S. Yabushita, and K. Kaya, J. Phys. Chem. A, 1997, 101(29): 5360
CrossRef ADS Google scholar
[16]
M. Fichtner, Adv. Eng. Mater., 2005, 7(6): 443
CrossRef ADS Google scholar
[17]
B. Kiran, A. K. Kandalam, and P. Jena, J. Phys. Chem. C, 2008, 112: 11580
CrossRef ADS Google scholar
[18]
R. C. Lochan and M. Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8(12): 1357
CrossRef ADS Google scholar
[19]
L. Gagliardi and P. Pyykko, J. Am. Chem. Soc., 2004, 126: 15014
CrossRef ADS Google scholar
[20]
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501
CrossRef ADS Google scholar
[21]
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef ADS Google scholar
[22]
E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett., 2006, 97(22): 226102
CrossRef ADS Google scholar
[23]
W. Zhou, T. Yildirim, E. Durgun, and S. Ciraci, Phys. Rev. B, 2007, 76(8): 085434
CrossRef ADS Google scholar
[24]
M. Barbatti, G. Jalbert, and M. A. C. Nascimento, J. Chem. Phys., 2001, 114(5): 2213
CrossRef ADS Google scholar
[25]
W. Q. Deng, X. Xu, and W. A. Goddard, Phys. Rev. Lett., 2004, 92(16): 166103
CrossRef ADS Google scholar
[26]
G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Nano Lett., 2007, 7(7): 1893
CrossRef ADS Google scholar
[27]
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128(30): 9741
CrossRef ADS Google scholar
[28]
K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett., 2008, 8(1): 13
CrossRef ADS Google scholar
[29]
C. S. Liu and Z. Zeng, Phys. Rev. B, 2009, 79(24): 245419
CrossRef ADS Google scholar
[30]
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford: Oxford University Press, 1989
[31]
A. D. Becke, J. Chem. Phys., 1993, 98(7): 5648
CrossRef ADS Google scholar
[32]
S. B. Boys and F. Bernardi, Mol. Phys., 1970, 19(4): 553
CrossRef ADS Google scholar
[33]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, , Gaussian 03, Revision B. 02, Pittsburgh, PA: Gaussian Inc., 2003
[34]
B. Kiran, A. K. Kandalam, and P. Jena, J. Chem. Phys., 2006, 124(22): 224703
CrossRef ADS Google scholar
[35]
P. F. Weck, T. J. D. Kumar, E. Kim, and N. Balakrishnan, J. Chem. Phys., 2007, 126(9): 094703
CrossRef ADS Google scholar
[36]
C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Appl. Phys. Lett., 2008, 93(4): 043123
CrossRef ADS Google scholar
[37]
J. G. Vitillo, A. Damin, A. Zecchina, and G. Ricchiardi, J. Chem. Phys., 2005, 122(11): 114311
CrossRef ADS Google scholar
[38]
C. G. Zhang, R. Zhang, Z. X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chemistry, 2009, 15(24): 5910
CrossRef ADS Google scholar
[39]
J. H. Guo and H. Zhang, Struct. Chem., 2011 (accepted)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/