DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-
Hong ZHANG, Xiao-dong LI, Yong-jian TANG
DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-
The interactions of dihydrogen with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2) were studied by means of density functional theory (DFT) calculation. For all the complexes considered, each bonded lithium atom can adsorb up to five H2 molecules with the mean binding energy of 0.59 eV/H2 molecule. The interactions can be attributed to the charge transfer from the H2 bonding orbitals to the Li 2s orbitals. The kinetic stability of these hydrogen-covered organolithium molecules is discussed in terms of the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The results indicate that these organiclithium structures can perhaps be used as building units for potential hydrogen storage materials.
adsorption / density functional calculations / organolithium molecule / hydrogen storage
[1] |
http://www.eere.energy.gov/hydrogenandfuelcells
|
[2] |
S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today, 2007, 120(3-4): 246
CrossRef
ADS
Google scholar
|
[3] |
E. Klontzas, A. Mavrandonakis, G. E. Froudakis, Y. Carissan, and W. Klopper, J. Phys. Chem. C, 2007, 111: 13635
CrossRef
ADS
Google scholar
|
[4] |
Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef
ADS
Google scholar
|
[5] |
M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Phys. Rev. Lett., 2008, 100(20): 206806
CrossRef
ADS
Google scholar
|
[6] |
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, J. Chem. Theory Comput., 2009, 5: 374
CrossRef
ADS
Google scholar
|
[7] |
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944
CrossRef
ADS
Google scholar
|
[8] |
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon, 2001, 39(15): 2291
CrossRef
ADS
Google scholar
|
[9] |
S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B, 2005, 72(15): 155404
CrossRef
ADS
Google scholar
|
[10] |
G. Wilkinson, F. G. A. Stone, and E. W. Abel, Comprehensive Organometallic Chemistry, New York: Pergamon, 1982
|
[11] |
J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97(5): 1303
CrossRef
ADS
Google scholar
|
[12] |
D. Braga, P. J. Dyson, F. Grepioni, and B. F. G. Johnson, Chem. Rev., 1994, 94(6): 1585
CrossRef
ADS
Google scholar
|
[13] |
T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, and K. Kaya, Organometallics, 1999, 18(8): 1430
CrossRef
ADS
Google scholar
|
[14] |
K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, and K. Kaya, J. Phys. Chem., 1995, 99(10): 3053
CrossRef
ADS
Google scholar
|
[15] |
T. Yasuike, A. Nakajima, S. Yabushita, and K. Kaya, J. Phys. Chem. A, 1997, 101(29): 5360
CrossRef
ADS
Google scholar
|
[16] |
M. Fichtner, Adv. Eng. Mater., 2005, 7(6): 443
CrossRef
ADS
Google scholar
|
[17] |
B. Kiran, A. K. Kandalam, and P. Jena, J. Phys. Chem. C, 2008, 112: 11580
CrossRef
ADS
Google scholar
|
[18] |
R. C. Lochan and M. Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8(12): 1357
CrossRef
ADS
Google scholar
|
[19] |
L. Gagliardi and P. Pyykko, J. Am. Chem. Soc., 2004, 126: 15014
CrossRef
ADS
Google scholar
|
[20] |
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501
CrossRef
ADS
Google scholar
|
[21] |
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef
ADS
Google scholar
|
[22] |
E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett., 2006, 97(22): 226102
CrossRef
ADS
Google scholar
|
[23] |
W. Zhou, T. Yildirim, E. Durgun, and S. Ciraci, Phys. Rev. B, 2007, 76(8): 085434
CrossRef
ADS
Google scholar
|
[24] |
M. Barbatti, G. Jalbert, and M. A. C. Nascimento, J. Chem. Phys., 2001, 114(5): 2213
CrossRef
ADS
Google scholar
|
[25] |
W. Q. Deng, X. Xu, and W. A. Goddard, Phys. Rev. Lett., 2004, 92(16): 166103
CrossRef
ADS
Google scholar
|
[26] |
G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Nano Lett., 2007, 7(7): 1893
CrossRef
ADS
Google scholar
|
[27] |
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128(30): 9741
CrossRef
ADS
Google scholar
|
[28] |
K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett., 2008, 8(1): 13
CrossRef
ADS
Google scholar
|
[29] |
C. S. Liu and Z. Zeng, Phys. Rev. B, 2009, 79(24): 245419
CrossRef
ADS
Google scholar
|
[30] |
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford: Oxford University Press, 1989
|
[31] |
A. D. Becke, J. Chem. Phys., 1993, 98(7): 5648
CrossRef
ADS
Google scholar
|
[32] |
S. B. Boys and F. Bernardi, Mol. Phys., 1970, 19(4): 553
CrossRef
ADS
Google scholar
|
[33] |
M. J. Frisch, G. W. Trucks, H. B. Schlegel,
|
[34] |
B. Kiran, A. K. Kandalam, and P. Jena, J. Chem. Phys., 2006, 124(22): 224703
CrossRef
ADS
Google scholar
|
[35] |
P. F. Weck, T. J. D. Kumar, E. Kim, and N. Balakrishnan, J. Chem. Phys., 2007, 126(9): 094703
CrossRef
ADS
Google scholar
|
[36] |
C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Appl. Phys. Lett., 2008, 93(4): 043123
CrossRef
ADS
Google scholar
|
[37] |
J. G. Vitillo, A. Damin, A. Zecchina, and G. Ricchiardi, J. Chem. Phys., 2005, 122(11): 114311
CrossRef
ADS
Google scholar
|
[38] |
C. G. Zhang, R. Zhang, Z. X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chemistry, 2009, 15(24): 5910
CrossRef
ADS
Google scholar
|
[39] |
J. H. Guo and H. Zhang, Struct. Chem., 2011 (accepted)
|
/
〈 | 〉 |