DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)

Hong ZHANG , Xiao-dong LI , Yong-jian TANG

Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 231 -235.

PDF (211KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 231 -235. DOI: 10.1007/s11467-011-0185-0
RESEARCH ARTICLE

DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)

Author information +
History +
PDF (211KB)

Abstract

The interactions of dihydrogen with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2) were studied by means of density functional theory (DFT) calculation. For all the complexes considered, each bonded lithium atom can adsorb up to five H2 molecules with the mean binding energy of 0.59 eV/H2 molecule. The interactions can be attributed to the charge transfer from the H2 bonding orbitals to the Li 2s orbitals. The kinetic stability of these hydrogen-covered organolithium molecules is discussed in terms of the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The results indicate that these organiclithium structures can perhaps be used as building units for potential hydrogen storage materials.

Keywords

adsorption / density functional calculations / organolithium molecule / hydrogen storage

Cite this article

Download citation ▾
Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2). Front. Phys., 2011, 6(2): 231-235 DOI:10.1007/s11467-011-0185-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

[2]

S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today, 2007, 120(3-4): 246

[3]

E. Klontzas, A. Mavrandonakis, G. E. Froudakis, Y. Carissan, and W. Klopper, J. Phys. Chem. C, 2007, 111: 13635

[4]

Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363

[5]

M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Phys. Rev. Lett., 2008, 100(20): 206806

[6]

G. G. Tibbetts, G. P. Meisner, and C. H. Olk, J. Chem. Theory Comput., 2009, 5: 374

[7]

M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944

[8]

G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon, 2001, 39(15): 2291

[9]

S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B, 2005, 72(15): 155404

[10]

G. Wilkinson, F. G. A. Stone, and E. W. Abel, Comprehensive Organometallic Chemistry, New York: Pergamon, 1982

[11]

J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97(5): 1303

[12]

D. Braga, P. J. Dyson, F. Grepioni, and B. F. G. Johnson, Chem. Rev., 1994, 94(6): 1585

[13]

T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, and K. Kaya, Organometallics, 1999, 18(8): 1430

[14]

K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, and K. Kaya, J. Phys. Chem., 1995, 99(10): 3053

[15]

T. Yasuike, A. Nakajima, S. Yabushita, and K. Kaya, J. Phys. Chem. A, 1997, 101(29): 5360

[16]

M. Fichtner, Adv. Eng. Mater., 2005, 7(6): 443

[17]

B. Kiran, A. K. Kandalam, and P. Jena, J. Phys. Chem. C, 2008, 112: 11580

[18]

R. C. Lochan and M. Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8(12): 1357

[19]

L. Gagliardi and P. Pyykko, J. Am. Chem. Soc., 2004, 126: 15014

[20]

T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501

[21]

Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582

[22]

E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett., 2006, 97(22): 226102

[23]

W. Zhou, T. Yildirim, E. Durgun, and S. Ciraci, Phys. Rev. B, 2007, 76(8): 085434

[24]

M. Barbatti, G. Jalbert, and M. A. C. Nascimento, J. Chem. Phys., 2001, 114(5): 2213

[25]

W. Q. Deng, X. Xu, and W. A. Goddard, Phys. Rev. Lett., 2004, 92(16): 166103

[26]

G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Nano Lett., 2007, 7(7): 1893

[27]

Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128(30): 9741

[28]

K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett., 2008, 8(1): 13

[29]

C. S. Liu and Z. Zeng, Phys. Rev. B, 2009, 79(24): 245419

[30]

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford: Oxford University Press, 1989

[31]

A. D. Becke, J. Chem. Phys., 1993, 98(7): 5648

[32]

S. B. Boys and F. Bernardi, Mol. Phys., 1970, 19(4): 553

[33]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, , Gaussian 03, Revision B. 02, Pittsburgh, PA: Gaussian Inc., 2003

[34]

B. Kiran, A. K. Kandalam, and P. Jena, J. Chem. Phys., 2006, 124(22): 224703

[35]

P. F. Weck, T. J. D. Kumar, E. Kim, and N. Balakrishnan, J. Chem. Phys., 2007, 126(9): 094703

[36]

C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Appl. Phys. Lett., 2008, 93(4): 043123

[37]

J. G. Vitillo, A. Damin, A. Zecchina, and G. Ricchiardi, J. Chem. Phys., 2005, 122(11): 114311

[38]

C. G. Zhang, R. Zhang, Z. X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chemistry, 2009, 15(24): 5910

[39]

J. H. Guo and H. Zhang, Struct. Chem., 2011 (accepted)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (211KB)

1071

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/