Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy

Jian WANG, Guang-bo CHE, Qing-wei WANG, Wan-xi ZHANG, Li-min WANG

PDF(223 KB)
PDF(223 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 209-213. DOI: 10.1007/s11467-011-0177-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy

Author information +
History +

Abstract

The Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy samples were synthesized by melt-spinning technique at the different wheel velocity (cooling rate), and the structure and electrochemical hydrogen storage properties were investigated. The result indicated that the structure of the melt-spun ribbons mainly contains C14 Laves phase and V-based solid solution phase. The discharge capacity, cyclic stability, high-rate discharge ability and electrochemical kinetic of the alloy electrodes are correlated with the cooling rate (wheel velocity), and the maximum discharge capacity is over 200 mA·h/g at the wheel velocity of 20 m/s.

Keywords

Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy / melt-spinning / hydrogen storage / electrochemical properties

Cite this article

Download citation ▾
Jian WANG, Guang-bo CHE, Qing-wei WANG, Wan-xi ZHANG, Li-min WANG. Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy. Front. Phys., 2011, 6(2): 209‒213 https://doi.org/10.1007/s11467-011-0177-0

References

[1]
H. W. Yang, W. S. Lee, Y. Y. Wang, C. C. Wan, T. W. Cheng, and K. H. Lang, J. Mater. Res., 1995, 10(7): 1680
CrossRef ADS Google scholar
[2]
D. Y. Song, X. Q. Gao, Y. S. Zhang, J. Yan, and P. W. Shen, J. Alloy. Comp., 1994, 206(1): 43
[3]
Z. B. Liu, Q. Li, Z. Zhang, G. F. Mi, Q. L. Yuan, and L. M. Wang, Int. J. Hydrogen Energy, 2009, 34(4): 1890
CrossRef ADS Google scholar
[4]
D. Y. Yah, G. Sandrock, and S. Suda, J. Alloy. Comp., 1995, 223(1): 32
[5]
S. M. Lee, S. H. Kim, and J. Y. Lee, J. Alloy. Comp., 2002, 330-332: 796
[6]
H. H. Lee, K. Y. Lee, and J. Y. Lee, J. Alloy. Comp., 1997, 253-254(1-2): 601
[7]
S. J. Choi, J. Choi, C. Y. Seo, and C. N. Park, J. Alloy. Comp., 2003, 356-357: 725
[8]
B. Z. Liu, Y. M. Wu, and L. M. Wang, J. Power Sources, 2006, 159(2): 1458
CrossRef ADS Google scholar
[9]
W. Hu, J. L. Wang, L. D. Wang, Y. M. Wu, and L. Wang, Electrochim. Acta, 2009, 54(10): 2770
CrossRef ADS Google scholar
[10]
H. Iba and E. Akiba, J. Alloy. Comp., 1997, 253-254(1-2): 21
[11]
M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, and T. Sakai, J. Alloy. Comp., 1997, 253-254(1-2): 583
[12]
M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, and T. Sakai, J. Alloy. Comp., 1996, 236(1-2): 151
[13]
Y. H. Xua, C. P. Chen, X. L. Wang, Y. Q. Lei, X. H. Wang, L. X. Chen, and Q. D. Wang, Int. J. Hydrogen Energy, 2007, 32(12): 1716
CrossRef ADS Google scholar
[14]
J. J. Reilly and R. H. Wiswall, Inorg. Chem., 1979, 9(7): 1678
CrossRef ADS Google scholar
[15]
Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(10): 977
CrossRef ADS Google scholar
[16]
H. Miao, M. X. Gao, Y. F. Liu, Y. Lin, J. H. Wang, and H. G. Pan, Int. J. Hydrogen Energy, 2007, 32(16): 3947
CrossRef ADS Google scholar
[17]
Y. H. Zhang, B.W. Li, H. P. Ren, S. H. Guo, Z. W. Wu, and X. L. Wang, Mater. Chem. Phys., 2009, 115(1): 328
CrossRef ADS Google scholar
[18]
T. Z. Huang, Z. Wu, S. L. Feng, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 390(1-2): 362
CrossRef ADS Google scholar
[19]
K. Zhong, Y. F. Liu, M. X. Gao, J. H. Wang, H. Miao, and H. G. Pan, Int. J. Hydrogen Energy, 2008, 33(2): 149
CrossRef ADS Google scholar
[20]
N. Kuriyama, T. Sakai, H. Miyamura, I. Ueharaand, and H. Ishikawa, J. Alloy. Comp., 1993, 202(1-2): 183

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(223 KB)

Accesses

Citations

Detail

Sections
Recommended

/