Tripyrrylmethane based 2D porous structure for hydrogen storage

Xiao ZHOU (周啸), Jian ZHOU (周健), Kun LÜ (吕坤), Qiang SUN (孙强)

PDF(252 KB)
PDF(252 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 220-223. DOI: 10.1007/s11467-011-0176-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Tripyrrylmethane based 2D porous structure for hydrogen storage

Author information +
History +

Abstract

The key to hydrogen storage is to design new materials with light mass, large surface and rich adsorption sites. Based on the recent experimental success in synthesizing tripyrrylmethane, we have explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found that the structure is stable, and the exposed Ti sites can bind three hydrogen molecules with an average binding energy of 0.175 eV/H2, which lies in the energy window for storage and release of hydrogen in room temperature and at the ambient pressure.

Keywords

tripyrrylmethane / hydrogen storage

Cite this article

Download citation ▾
Xiao ZHOU (周啸), Jian ZHOU (周健), Kun LÜ (吕坤), Qiang SUN (孙强). Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys., 2011, 6(2): 220‒223 https://doi.org/10.1007/s11467-011-0176-1

References

[1]
L.Schlapbach and A.Züttel, Nature, 2001, 414(6861): 353
CrossRef ADS Google scholar
[2]
R. D.Cortright, R. R.Davda, and J. A.Dumesic, Nature, 2002, 418(6901): 964
CrossRef ADS Google scholar
[3]
J.Alper, Science, 2003, 299(5613): 1686
CrossRef ADS Google scholar
[4]
N. L.Rosi, J.Eckert, M.Eddaoudi, D. T.Vodak, J.Kim, M.O’Keeffe, and O. M.Yaghi, Science, 2003, 300(5622): 1127
CrossRef ADS Google scholar
[5]
J. L. C.Rowsell and O. M.Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670
CrossRef ADS Google scholar
[6]
S.Orimo, Y.Nakamori, J. R.Eliseo, A.Züttel, and C. M.Jensen, Chem. Rev., 2007, 107(10): 4111
CrossRef ADS Google scholar
[7]
M.Fichtner, Adv. Eng. Mater., 2005, 7(6): 443
CrossRef ADS Google scholar
[8]
Q.Sun, Q.Wang, P.Jena, and Y.Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef ADS Google scholar
[9]
Y.Wang and J. P.Perdew, Phys. Rev. B, 1991, 44(24): 13298
CrossRef ADS Google scholar
[10]
B.Delley, J. Chem. Phys., 1990, 92(1): 508
CrossRef ADS Google scholar
[11]
B.Delley, J. Chem. Phys., 2000, 113(18): 7756
CrossRef ADS Google scholar
[12]
H. J.Monkhorst and J. D.Pack, Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[13]
D. R.Lide, CRC Handbook of Chemistry and Physics, New York: CRC, 2000
[14]
S. J.Hong, S. D.Jeong, J.Yoo, J. S.Kim, J.Yoon, and C. H.Lee, Tetrahedron Lett., 2008, 49(26): 4138
CrossRef ADS Google scholar
[15]
G. J.Kubas, Acc. Chem. Res., 1988, 21: 120
CrossRef ADS Google scholar
[16]
J.Niu, B. K.Rao, and P.Jena, Phys. Rev. Lett., 1998, 68(15): 2277
CrossRef ADS Google scholar
[17]
S. K.Bhatia and A. L.Myers, Langmuir, 2006, 22(4): 1688
CrossRef ADS Google scholar
[18]
H. S.Gill, I.Finger, I.Bozidarevic, F.Szydlo Szydlo, and M. J.Scott, New J. Chem., 2005, 29: 68
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(252 KB)

Accesses

Citations

Detail

Sections
Recommended

/