Tripyrrylmethane based 2D porous structure for hydrogen storage
Xiao ZHOU (周啸), Jian ZHOU (周健), Kun LÜ (吕坤), Qiang SUN (孙强)
Tripyrrylmethane based 2D porous structure for hydrogen storage
The key to hydrogen storage is to design new materials with light mass, large surface and rich adsorption sites. Based on the recent experimental success in synthesizing tripyrrylmethane, we have explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found that the structure is stable, and the exposed Ti sites can bind three hydrogen molecules with an average binding energy of 0.175 eV/H2, which lies in the energy window for storage and release of hydrogen in room temperature and at the ambient pressure.
tripyrrylmethane / hydrogen storage
[1] |
L.Schlapbach and A.Züttel, Nature, 2001, 414(6861): 353
CrossRef
ADS
Google scholar
|
[2] |
R. D.Cortright, R. R.Davda, and J. A.Dumesic, Nature, 2002, 418(6901): 964
CrossRef
ADS
Google scholar
|
[3] |
J.Alper, Science, 2003, 299(5613): 1686
CrossRef
ADS
Google scholar
|
[4] |
N. L.Rosi, J.Eckert, M.Eddaoudi, D. T.Vodak, J.Kim, M.O’Keeffe, and O. M.Yaghi, Science, 2003, 300(5622): 1127
CrossRef
ADS
Google scholar
|
[5] |
J. L. C.Rowsell and O. M.Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670
CrossRef
ADS
Google scholar
|
[6] |
S.Orimo, Y.Nakamori, J. R.Eliseo, A.Züttel, and C. M.Jensen, Chem. Rev., 2007, 107(10): 4111
CrossRef
ADS
Google scholar
|
[7] |
M.Fichtner, Adv. Eng. Mater., 2005, 7(6): 443
CrossRef
ADS
Google scholar
|
[8] |
Q.Sun, Q.Wang, P.Jena, and Y.Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef
ADS
Google scholar
|
[9] |
Y.Wang and J. P.Perdew, Phys. Rev. B, 1991, 44(24): 13298
CrossRef
ADS
Google scholar
|
[10] |
B.Delley, J. Chem. Phys., 1990, 92(1): 508
CrossRef
ADS
Google scholar
|
[11] |
B.Delley, J. Chem. Phys., 2000, 113(18): 7756
CrossRef
ADS
Google scholar
|
[12] |
H. J.Monkhorst and J. D.Pack, Phys. Rev. B, 1976, 13(12): 5188
CrossRef
ADS
Google scholar
|
[13] |
D. R.Lide, CRC Handbook of Chemistry and Physics, New York: CRC, 2000
|
[14] |
S. J.Hong, S. D.Jeong, J.Yoo, J. S.Kim, J.Yoon, and C. H.Lee, Tetrahedron Lett., 2008, 49(26): 4138
CrossRef
ADS
Google scholar
|
[15] |
G. J.Kubas, Acc. Chem. Res., 1988, 21: 120
CrossRef
ADS
Google scholar
|
[16] |
J.Niu, B. K.Rao, and P.Jena, Phys. Rev. Lett., 1998, 68(15): 2277
CrossRef
ADS
Google scholar
|
[17] |
S. K.Bhatia and A. L.Myers, Langmuir, 2006, 22(4): 1688
CrossRef
ADS
Google scholar
|
[18] |
H. S.Gill, I.Finger, I.Bozidarevic, F.Szydlo Szydlo, and M. J.Scott, New J. Chem., 2005, 29: 68
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |