Progress in improving thermodynamics and kinetics of new hydrogen storage materials

Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷)

PDF(339 KB)
PDF(339 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 151-161. DOI: 10.1007/s11467-011-0175-2
REVIEW ARTICLE
REVIEW ARTICLE

Progress in improving thermodynamics and kinetics of new hydrogen storage materials

Author information +
History +

Abstract

Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.

Keywords

ammonia borane / hydrogen storage materials / hydrides / kinetics / metal organic frameworks / thermodynamics

Cite this article

Download citation ▾
Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷). Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Front. Phys., 2011, 6(2): 151‒161 https://doi.org/10.1007/s11467-011-0175-2

References

[1]
J.Graetz, Chem. Soc. Rev., 2009, 38(1): 73
[2]
S.Satyapal, J.Petrovic, C.Read, G.Thomas, and G.Ordaz, Catal. Today, 2007, 120(3-4): 246
[3]
P.Chen and M.Zhu, Mater. Today, 2008, 11(12): 36
[4]
L.Schlapbach and A.Züttel, Nature, 2001, 414(6861): 353
[5]
J.Yang, A.Sudik, C.Wolverton, and D. J.Siegel, Chem. Soc. Rev., 2010, 39(2): 656
[6]
B.Bogdanović and M.Schwickardi, J.Alloy. Comp., 1997, 253-254(1-2): 1
[7]
J. A.Dilts and E. C.Ashby, Inorg. Chem., 1972, 11(6): 1230
[8]
S. S.Liu, L. X.Sun, Y.Zhang, F.Xu, J.Zhang, H. L.Chu, M. Q.Fan, T.Zhang, X. Y.Song, and J. P.Grolier, Int. J. Hydrogen Energy, 2009, 34(19): 8079
[9]
J. R.Ares, K. F.Aguey-Zinsou, M.Porcu, J. M.Sykes, M.Dornheim, T.Klassen, and R.Bormann, Mater. Res. Bull., 2008, 43(5): 1263
[10]
R. A.Varin and L.Zbroniec, J. Alloy. Comp., 2010, 504(1): 89
[11]
A.Andreasen, T.Vegge, and A. S.Pedersen, J. Solid State Chem., 2005, 178(12): 3672
[12]
V. P.Balema, J. W.Wiench, K. W.Dennis, M.Pruski, and V. K.Pecharsky, J. Alloy. Comp., 2001, 329(1-2): 108
[13]
J.Chen, N.Kuriyama, Q.Xu, H. T.Takeshita, and T.Sakai, J. Phys. Chem. B, 2001, 105(45): 11214
[14]
M.Resan, M. D.Hampton, J. K.Lomness, and D. K.Slattery, Int. J. Hydrogen Energy, 2005, 30(13-14): 1417
[15]
M.Resan, M. D.Hampton, J. K.Lomness, and D. K.Slattery, Int. J. Hydrogen Energy, 2005, 30(13-14): 1413
[16]
X. P.Zheng, X. H.Qu, I. S.Humail, P.Li, and G. Q.Wang, Int. J. Hydrogen Energy, 2007, 32(9): 1141
[17]
H. W.Brinks, A.Fossdal, J. E.Fonneløp, and B. C.Hauback, J. Alloy. Comp., 2005, 397(1-2): 291
[18]
V. P.Balema, K. W.Dennis, and V. K.Pecharsky, Chem. Commun. (Camb.), 2000, (17): 1665
[19]
D. S.Easton, J. H.Schneibel, and S. A.Speakman, J. Alloy. Comp., 2005, 398(1-2): 245
[20]
D.Blanchard, H. W.Brinks, B. C.Hauback, and P.Norby, Mater. Sci. Eng. B, 2004, 108(1-2): 54
[21]
J. R.Ares, K. F.Aguey-Zinsou, M.Elsaesser, X. Z.Ma, M.Dornheim, T.Klassen, and R.Bormann, Int. J. Hydrogen Energy, 2007, 32(8): 1033
[22]
Y.Suttisawat, P.Rangsunvigit, B.Kitiyanan, N.Muangsin, and S.Kulprathipanja, Int. J. Hydrogen Energy, 2007, 32(9): 1277
[23]
T.Sun, C. K.Huang, H.Wang, L. X.Sun, and M.Zhu, Int. J. Hydrogen Energy, 2008, 33(21): 6216
[24]
L. H.Kumar, B.Viswanathan, and S. S.Murthy, Int. J. Hydrogen Energy, 2008, 33: 366
[25]
L.Zaluski, A.Zaluska, and J. O.Ström-Olsen, J. Alloy. Comp., 1999, 290(1-2): 71
[26]
F. H.Wang, Y. F.Liu, M. X.Gao, K.Luo, H. G.Pan, and Q. D.Wang, J. Phys. Chem. C, 2009, 113(18): 7978
[27]
A. W.Vittetoe, M. U.Niemann, S. S.Srinivasan, K.Mc-Grath, A.Kumar, D. Y.Goswami, E. K.Stefanakos, and S.Thomas, Int. J. Hydrogen Energy, 2009, 34(5): 2333
[28]
S. S.Liu, L. X.Sun, J.Zhang, Y.Zhang, F.Xu, Y. H.Xing, F.Li, J. J.Zhao, Y.Du, W. Y.Hu, and H. Q.Deng, Int. J. Hydrogen Energy, 2010, 35(15): 8122
[29]
S.Sartori, A.Léon, O.Zabara, J.Muller, M.Fichtner, and B. C.Hauback, J. Alloy. Comp., 2009, 476(1-2): 639
[30]
J. F.Mao, Z. P.Guo, H. K.Liu, and X. B.Yu, J. Alloy. Comp., 2009, 487(1-2): 434
[31]
J. F.Mao, X. B.Yu, Z. P.Guo, C. K.Poh, H. K.Liu, Z.Wu, and J.Ni, J. Phys. Chem. C, 2009, 113(24): 10813
[32]
J.Wang, A. D.Ebner, and J. A.Ritter, J. Am. Chem. Soc., 2006, 128(17): 5949
[33]
J.Graetz, J.Wegrzyn, and J. J.Reilly, J. Am. Chem. Soc., 2008, 130(52): 17790
[34]
X. F.Liu, G. S.McGrady, H. W.Langmi, and C. M.Jensen, J. Am. Chem. Soc., 2009, 131(14): 5032
[35]
S.Orimo, Y.Nakamori, G.Kitahara, K.Miwa, N.Ohba, S.Towata, and A.Züttel, J. Alloy. Comp., 2005, 404-406: 427
[36]
Z. Z.Fang, P.Wang, T. E.Rufford, X. D.Kang, G. Q.Lu, and H. M.Cheng, Acta Mater., 2008, 56(20): 6257
[37]
N.Brun, R.Janot, C.Sanchez, H.Deleuze, C.Gervais, M.Morcrette, and R.Backov Energy, Environ. Sci., 2010, 3: 824
[38]
A. F.Gross, J. J.Vajo, S. L. V.Atta, and G. L.Olson, J. Phys. Chem. C, 2008, 112(14): 5651
[39]
P.Ngene, P.Adelhelm, A. M.Beale, K. P.de Jong, and P. E.de Jongh, J. Phys. Chem. C, 2010, 114(13): 6163
[40]
F. W.Dafert and R.Miklauz, Monatsh. Chem., 1910, 31(9): 981
[41]
R.Juza and K.Opp, Z.Anorg. Allg. Chem., 1951, 266(6): 313
[42]
P.Chen, Z. T.Xiong, J. Z.Luo, J. Y.Lin, and K. L.Tan, Nature, 2002, 420(6913): 302
[43]
T.Ichikawa, N.Hanada, S.Isobe, H. Y.Leng, and H.Fujii, J. Phys. Chem. B, 2004, 108(23): 7887
[44]
P.Chen, Z. T.Xiong, J. Z.Luo, J. Y.Lin, and K. L.Tan, J. Phys. Chem. B, 2003, 107(39): 10967
[45]
T.Ichikawa, S.Isobe, N.Hanada, and H.Fujii, J. Alloy. Comp., 2004, 365(1-2): 271
[46]
S.Isobe, T.Ichikawa, S.Hino, and H.Fujii, J. Phys. Chem. B, 2005, 109(31): 14855
[47]
T.Hao, M.Matsuo, Y.Nakamori, and S.Orimo, J. Alloy. Comp., 2008, 458(1-2): L1
[48]
J. Z.Hu, J. H.Kwak, Z. G.Yang, W.Osborn, T.Markmaitree, and L. L.Shaw, J. Power Sources, 2008, 182(1): 278
[49]
H. Y.Leng, T.Ichikawa, S.Hino, and H.Fujii, J. Alloy. Comp., 2008, 463(1-2): 462
[50]
S. D.Beattie, H. W.Langmi, and G. S.McGrady, Int. J. Hydrogen Energy, 2009, 34(1): 376
[51]
R. A.Varin, M.Jang, and M.Polanski, J. Alloy. Comp., 2010, 491(1-2): 658
[52]
W.Osborn, T.Markmaitree, L. L.Shaw, J. Z.Hu, J.Kwak, and Z. G.Yang, Int. J. Hydrogen Energy, 2009, 34(10): 4331
[53]
W.Osborn, T.Markmaitree, L. L.Shaw, R. M.Ren, J. Z.Hu, J. H.Kwak, and Z. G.Yang, JOM, 2009, 61(4): 45
[54]
J. Z.Hu, J. H.Kwak, Z.Yang, W.Osborn, T.Markmaitree, and L. L.Shaw, J. Power Sources, 2008, 181(1): 116
[55]
W.Osborn, T.Markmaitree, and L. L.Shaw, Nanotechnology, 2009, 20(20): 204082
[56]
A.Blomqvist, C. M.Araujo, R. H.Scheicher, P.Srepusharawoot, W.Li, P.Chen, and R.Ahuja, Phys. Rev. B, 2010, 82(2): 024304
[57]
L. P.Ma, H. B.Dai, Z. Z.Fang, X. D.Kang, Y.Liang, P. J.Wang, P.Wang, and H. M.Cheng, J. Phys. Chem. C, 2009, 113(22): 9944
[58]
L. P.Ma, Z. Z.Fang, H. B.Dai, X. D.Kang, Y.Liang, P. J.Wang, P.Wang, and H. M.Cheng, J. Mater. Res., 2009, 24(6): 1936
[59]
H.Liu, Y. H.Zhang, and S. P.Huang, Chin. J. Chem. Phys., 2010, 23(1): 5
[60]
J.Lu, Y. J.Choi, Z. Z.Fang, and H. Y.Sohn, J. Power Sources, 2010, 195(7): 1992
[61]
T.Markmaitree and L. L.Shaw, J. Power Sources, 2010, 195(7): 1984
[62]
R. R.Shahi, T. P.Yadav, M. A.Shaz, and O. N.Srivastva, Int. J. Hydrogen Energy, 2010, 35(1): 238
[63]
M.Tsubota, S.Hino, H.Fujii, C.Oomatsu, M.Yamana, T.Ichikawa, and Y.Kojima, Int. J. Hydrogen Energy, 2010, 35(5): 2058
[64]
F.Dolci, E.Weidner, M.Hoelzel, T.Hansen, P.Moretto, C.Pistidda, M.Brunelli, M.Fichtner, and W.Lohstroh, Int. J. Hydrogen Energy, 2010, 35(11): 5448
[65]
Q.Wang, Y. G.Chen, C. L.Wu, M. D.Tao, and J. G.Gai, Chin. Sci. Bull., 2009, 54(3): 497
[66]
Q.Wang, Y. G.Chen, G.Niu, C. L.Wu, and M. D.Tao, Ind. Eng. Chem. Res., 2009, 48(11): 5250
[67]
J. C.Wang, H. L.Li, S. M.Wang, X. P.Liu, Y.Li, and L. J.Jiang, Int. J. Hydrogen Energy, 2009, 34(3): 1411
[68]
L. P.Ma, P.Wang, H. B.Dai, and H. M.Cheng, J. Alloy. Comp., 2009, 468(1-2): L21
[69]
A.Sudik, J.Yang, D.Halliday, and C.Wolverton, J. Phys. Chem. C, 2008, 112(11): 4384
[70]
W. S.Tang, G.Wu, T.Liu, A. T. S.Wee, C. K.Yong, Z. T.Xiong, A. T. S.Hor, and P.Chen, Dalton Trans., 2008, 18(18): 2395
[71]
Y. X.Liu, S. Q.Yang, D. D.Zhang, G. X.Li, W. L.Wei, and J. Guo, Journal of Inorganic Materials, 2009, 24(4): 813
[72]
J. R.Hattrick-Simpers, J. E.Maslar, M. U.Niemann, C.Chiu, S. S.Srinivasan, E. K.Stefanakos, and L. A.Bendersky, Int. J. Hydrogen Energy, 2010, 35(12): 6323
[73]
L. L.Li, B.Peng, Z. L.Tao, F. Y.Cheng, and J.Chen, Adv. Funct. Mater., 2010, 20(12): 1894
[74]
D. M.Liu, Q. Q.Liu, T. Z.Si, and Q. A.Zhang, J. Alloy. Comp., 2010, 495(1): 272
[75]
A.Siangsai, Y.Suttisawat, P.Sridechprasat, P.Rangsunvigit, B.Kitiyanan, and S.Kulprathipanja, J. Chem. Eng. of Jpn, 2010, 43(1): 95
[76]
J. K.Yang, X. H.Wang, J.Mao, L. X.Chen, H. G.Pan, S. Q.Li, H. W.Ge, and C. P.Chen, J. Alloy. Comp., 2010, 494(1-2): 58
[77]
A.Sudik, J.Yang, D. J.Siegel, C.Wolverton, R. O.Carter, and A. R.Drews, J. Phys. Chem. C, 2009, 113(5): 2004
[78]
M. U.Niemann, S. S.Srinivasan, A.Kumar, E. K.Stefanakos, D. Y.Goswami, and K.McGrath, Int. J. Hydrogen Energy, 2009, 34(19): 8086
[79]
K.Luo, Y. F.Liu, F. H.Wang, M. X.Gao, and H. G.Pan, Int. J. Hydrogen Energy, 2009, 34(19): 8101
[80]
M. U. D.Naik, S. U.Rather, C. S.So, S. W.Hwang, A. R.Kim, and K. S.Nahm, Int. J. Hydrogen Energy, 2009, 34(21): 8937
[81]
X. L.Zheng, W. L.Xu, Z. T.Xiong, Y. S.Chua, G. T.Wu, S.Qin, H.Chen, and P.Chen, J. Mater. Chem., 2009, 19(44): 8426
[82]
Q. A.Wang, Z. Q.Chen, W. B.Yu, Y. G.Chen, and Y. A.Li, Ind. Eng. Chem. Res., 2010, 49(13): 5993
[83]
G.Wolf, J.Baumann, F.Baitalow, and F. P.Hoffmann, Thermochim. Acta, 2000, 343(1-2): 19
[84]
M. G.Hu, R. A.Geanangel, and W. W.Wendlandt, Thermochim. Acta, 1978, 23(2): 249
[85]
M. C.Denney, V.Pons, T. J.Hebden, D. M.Heinekey, and K. I.Goldberg, J. Am. Chem. Soc., 2006, 128(37): 12048
[86]
T.He, Z. T.Xiong, G. T.Wu, H. L.Chu, C. Z.Wu, T.Zhang, and P.Chen, Chem. Mater., 2009, 21(11): 2315
[87]
C. A.Jaska, K.Temple, A. J.Lough, and I.Manners, J. Am. Chem. Soc., 2003, 125(31): 9424
[88]
M.Chandra and Q.Xu, J. Power Sources, 2006, 156(2): 190
[89]
Q.Xu and M.Chandra, J. Power Sources, 2006, 163(1): 364
[90]
T. J.Clark, G. R.Whittell, and I.Manners, Inorg. Chem., 2007, 46(18): 7522
[91]
P. V.Ramachandran and P. D.Gagare, Inorg. Chem., 2007, 46(19): 7810
[92]
S. B.Kalidindi, M.Indirani, and B. R.Jagirdar, Inorg. Chem., 2008, 47(16): 7424
[93]
F. Y.Cheng, H.Ma, Y. M.Li, and J. Chen, Inorg. Chem., 2007, 46(3): 788
[94]
J. M.Yan, X. B.Zhang, S.Han, H.Shioyama, and Q.Xu, Angew. Chem. Int. Ed., 2008, 47(12): 2287
[95]
F. H.Stephens, R. T.Baker, M. H.Matus, D. J.Grant, and D. A.Dixon, Angew. Chem. Int. Ed., 2007, 46(5): 746
[96]
M. E.Bluhm, M. G.Bradley, U.Butterick, Kusari, and L. G.Sneddon, J. Am. Chem. Soc., 2006, 128(24): 7748
[97]
H. V. K.Diyabalanage, R. P.Shrestha, T. A.Semelsberger, B. L.Scott, M. E.Bowden, B. L.Davis, and A. K.Burrell, Angew. Chem. Int. Ed., 2007, 46(47): 8995
[98]
A.Gutowska, L. Y.Li, Y. S.Shin, C. M. M.Wang, X. H. S.Li, J. C.Linehan, R. S.Smith, B. D.Kay, B.Schmid, W.Shaw, M.Gutowski, and T.Autrey, Angew. Chem. Int. Ed., 2005, 44(23): 3578
[99]
Z. Y.Li, G. S.Zhu, G. Q.Lu, S. L.Qiu, and X. D.Yao, J. Am. Chem. Soc., 2010, 132(5): 1490
[100]
Z. T.Xiong, C. K.Yong, G. T.Wu, P.Chen, W.Shaw, A.Karkamkar, T.Autrey, M. O.Jones, S. R.Johnson, P. P.Edwards, and W. I. F.David, Nat. Mater., 2008, 7(2): 138
[101]
H. V. K.Diyabalanage, T.Nakagawa, R. P.Shrestha, T. A.Semelsberger, B. L.Davis, B. L.Scott, A. K.Burrell, W. I. F.David, K. R.Ryan, M. O.Jones, and P. P.Edwards, J. Am. Chem. Soc., 2010, 34(34): 11836
[102]
M.Eddaoudi, D. B.Moler, H.Li, B.Chen, T. M.Reineke, M.O’Keeffe, O. M.Yaghi, Acc. Chem. Res., 2001, 34: 319.
[103]
S.Sircar, R.Mohr, C.Ristic, and M. B.Rao, J. Phys. Chem. B, 1999, 103: 6539
[104]
Y.Yan, I.Telepeni, S. H.Yang, X.Lin, W.Kockelmann, A.Dailly, A. J.Blake, W.Lewis, G. S.Walker, D. R.Allan, S. A.Barnett, N. R.Champness, and M.Schröder, J. Am. Chem. Soc., 2010, 132(12): 4092
[105]
M.Dinc˘aA.Dailly, Y.Liu, C. M.Brown, D. A.Neumann, and J. R.Long, J. Am. Chem. Soc., 2006, 128(51): 16876
[106]
M.Dinca, A. F.Yu, and J. R.Long, J. Am. Chem. Soc., 2006, 128(27): 8904
[107]
H.Frost, T.Düren, and R. Q.Snurr, J. Phys. Chem. B, 2006, 110(19): 9565
[108]
K.Sillar, A.Hofmann, and J.Sauer, J. Am. Chem. Soc., 2009, 131(11): 4143
[109]
H.Furukawa, M. A.Miller, and O. M.Yaghi, J. Mater. Chem., 2007, 17(30): 3197
[110]
S. Y.Qi, K. J.Hay, M. J.Rood, and M. P.Cal, J. Environ. Eng., 2000, 126(3): 267
[111]
B.Assfour and G.Seifert, Int. J. Hydrogen Energy, 2009, 34(19): 8135
[112]
J. H.Luo, H. W.Xu, Y.Liu, Y. S.Zhao, L. L.Daemen, C.Brown, T. V.Timofeeva, S. Q.Ma, and H. C.Zhou, J. Am. Chem. Soc., 2008, 130(30): 9626
[113]
J. L.Rowsell, J.Eckert, and O. M.Yaghi, J. Am. Chem. Soc., 2005, 127(42): 14904
[114]
A. G.Wong-Foy, A. J.Matzger, and O. M.Yaghi, J. Am. Chem. Soc., 2006, 128(11): 3494
[115]
W.Zhou and T.Yildirim, J. Phys. Chem. C, 2008, 112(22): 8132
[116]
N. L.Rosi, J.Eckert, M.Eddaoudi, D. T.Vodak, J.Kim, M.O’Keeffe, and O. M.Yaghi, Science, 2003, 300(5622): 1127
[117]
J. L.Rowsell, A. R.Millward, K. S.Park, and O. M.Yaghi, J. Am. Chem. Soc., 2004, 126(18): 5666
[118]
B.Chen, N.Ockwig, A.Millward, D.Contreras, and O.Yaghi, Angew. Chem. Int. Ed., 2005, 117(30): 4823
[119]
Q.Yang and C.Zhong, J. Phys. Chem. B, 2006, 110(2): 655
[120]
N. S.Venkataramanan, R.Sahara, H.Mizuseki, and Y.Kawazoe, Int. J. Mol. Sci., 2009, 10(4): 1601
[121]
K. L.Mulfort, T. M.Wilson, M. R.Wasielewski, and J. T.Hupp, Langmuir, 2009, 25(1): 503
[122]
S.Yang, X.Lin, A. J.Blake, G. S.Walker, P.Hubberstey, N. R.Champness, and M.Schroder, Nat. Chem., 2009, 1(6): 487
[123]
A. P.Côté, A. I.Benin, N. W.Ockwig, M.O’Keeffe, A. J.Matzger, and O. M.Yaghi, Science, 2005, 310(5751): 1166
[124]
H. M.El-Kaderi, J. R.Hunt, J. L.Mendoza-Cortés, A. P.Côté, R. E.Taylor, M.O’Keeffe, and O. M.Yaghi, Science, 2007, 316(5822): 268
[125]
A. P.Côté, H. M.El-Kaderi, H.Furukawa, J. R.Hunt, and O. M.Yaghi, J. Am. Chem. Soc., 2007, 129(43): 12914
[126]
J. R.Hunt, C. J.Doonan, J. D.LeVangie, A. P.Côté, and O. M.Yaghi, J. Am. Chem. Soc., 2008, 130(36): 11872
[127]
G.Garberoglio, Langmuir, 2007, 23(24): 12155
[128]
S. S.Han, H.Furukawa, O. M.Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580
[129]
E.Tylianakis, E.Klontzas, and G. E.Froudakis, Nanotechnology, 2009, 20(20): 204030
[130]
E.Klontzas, E.Tylianakis, and G. E.Froudakis, J. Phys. Chem. C, 2008, 112(24): 9095
[131]
H.Furukawa and O. M.Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875
[132]
Y. J.Choi, J. W.Lee, J. H.Choi, and J. K.Kang, Appl. Phys. Lett., 2008, 92(17): 173102
[133]
E.Klontzas, E.Tylianakis, and G. E.Froudakis, J. Phys. Chem. C, 2009, 113(50): 21253
[134]
F.Li, J. J.Zhao, B.Johansson, and L. X.Sun, Int. J. Hydrogen Energy, 2010, 35(1): 266
[135]
X. L.Zou, G.Zhou, W. H.Duan, K.Choi, and J.Ihm, J. Phys. Chem. C, 2010, 114(31): 13402
[136]
E.Klontzas, E.Tylianakis, and G. E.Froudakis, Nano Lett., 2010, 10(2): 452
[137]
E. L.Spitler and W. R.Dichtel, Nat. Chem., 2010, 2(8): 672
[138]
K. S.Park, Z.Ni, A. P.Côté, J. Y.Choi, R. D.Huang, F. J.Uribe-Romo, H. K.Chae, M.O’Keeffe, and O. M.Yaghi, Proc. Natl. Acad. Sci. USA., 2006, 103(27): 10186
[139]
H.Hayashi, A. P.Côté, H.Furukawa, M.O’Keeffe, and O. M.Yaghi, Nat. Mater., 2007, 6(7): 501
[140]
A.Phan, C. J.Doonan, F. J.Uribe-Romo, C. B.Knobler, M.O’Keeffe, and O. M.Yaghi, Acc. Chem. Res., 2010, 43(1): 58
[141]
H.Wu, W.Zhou, and T.Yildirim, J. Am. Chem. Soc., 2007, 129(17): 5314

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/