Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

Fen LI, Ji-jun ZHAO, Li-xian SUN

PDF(198 KB)
PDF(198 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 214-219. DOI: 10.1007/s11467-011-0172-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

Author information +
History +

Abstract

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

Keywords

alloy / hydrogen storage / doping / first-principles

Cite this article

Download citation ▾
Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles. Front. Phys., 2011, 6(2): 214‒219 https://doi.org/10.1007/s11467-011-0172-5

References

[1]
Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94(15): 155504
CrossRef ADS Google scholar
[2]
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944
CrossRef ADS Google scholar
[3]
J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670
CrossRef ADS Google scholar
[4]
D. J. Collins and H. C. Zhou, J. Mater. Chem., 2007, 17(30): 3154
CrossRef ADS Google scholar
[5]
L. J. Murray, M. Dincă, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294
CrossRef ADS Google scholar
[6]
S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580
CrossRef ADS Google scholar
[7]
H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875
CrossRef ADS Google scholar
[8]
L. Zaluski and A. Zaluska, J. Alloys Comp., 1997, 253(1-2): 70
[9]
L. Schlapbach and A. Züttel, Nature, 2001, 414(6861): 353
CrossRef ADS Google scholar
[10]
D. Ohlendorf and H. E. Flotow, J. Chem. Phys., 1980, 73(6): 2937
CrossRef ADS Google scholar
[11]
S. Srivastava and O. N. Srivastava, J. Alloys Comp., 1999, 290: 250
[12]
K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B, 2001, 64(18): 184105
CrossRef ADS Google scholar
[13]
J. H. Sanders and B. J. Tatarchuk, J. Less Common Met., 1989, 147(2): 277
CrossRef ADS Google scholar
[14]
J. H. Woo and K. S. Lee, J. Electrochem. Soc., 1999, 146(3): 819
CrossRef ADS Google scholar
[15]
Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc., 2008, 18(4): 857
CrossRef ADS Google scholar
[16]
Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp., 2002, 337: 214
[17]
N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30(1): 53
CrossRef ADS Google scholar
[18]
C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta, 1996, 41: 2694
[19]
Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp., 2004, 365: 246
[20]
S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp., 2008, 465: 517
[21]
Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy, 2008, 33: 1868
CrossRef ADS Google scholar
[22]
S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp., 2009, 485: 867
[23]
Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy, 2009, 34(3): 1399
CrossRef ADS Google scholar
[24]
L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. J. Schulz, Mater. Sci., 1996, 31: 695
CrossRef ADS Google scholar
[25]
H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp., 2003, 356-357: 755
[26]
T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp., 2005, 404-406: 511
[27]
L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy, 2008, 33(2): 201
CrossRef ADS Google scholar
[28]
D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp., 2009, 478: 96
[29]
Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp., 2009, 480: 750
[30]
Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp., 2004, 381(1-2): 234
[31]
X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(7): 649
CrossRef ADS Google scholar
[32]
J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 2000, 25(8): 767
CrossRef ADS Google scholar
[33]
W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy, 2003, 113: 151
[34]
T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys., 2005, 93: 544
CrossRef ADS Google scholar
[35]
M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy, 2008, 33(14): 3754
CrossRef ADS Google scholar
[36]
K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp., 2009, 477: 749
[37]
R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater., 2006, 54(2): 465
CrossRef ADS Google scholar
[38]
Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp., 2005, 397: 68
[39]
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp., 1990, 293: 10
[40]
D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy, 2003, 28(12): 1425
CrossRef ADS Google scholar
[41]
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 2000, 25(2): 143
CrossRef ADS Google scholar
[42]
F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys., 2009, 105(4): 043707
CrossRef ADS Google scholar
[43]
M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64(4): 1045
CrossRef ADS Google scholar
[44]
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 2005, 220(5-6): 567
CrossRef ADS Google scholar
[45]
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar
[46]
M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys., 2003, 291(1): 53
CrossRef ADS Google scholar
[47]
D. Vanderbilt, Phys. Rev. B, 1990, 41(11): 7892
CrossRef ADS Google scholar
[48]
T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 397: 284
CrossRef ADS Google scholar
[49]
J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp., 1995, 231(1-2): 760
[50]
L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(198 KB)

Accesses

Citations

Detail

Sections
Recommended

/