Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

Fen LI , Ji-jun ZHAO , Li-xian SUN

Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 214 -219.

PDF (198KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 214 -219. DOI: 10.1007/s11467-011-0172-5
RESEARCH ARTICLE

Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

Author information +
History +
PDF (198KB)

Abstract

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

Keywords

alloy / hydrogen storage / doping / first-principles

Cite this article

Download citation ▾
Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles. Front. Phys., 2011, 6(2): 214-219 DOI:10.1007/s11467-011-0172-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94(15): 155504

[2]

M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944

[3]

J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670

[4]

D. J. Collins and H. C. Zhou, J. Mater. Chem., 2007, 17(30): 3154

[5]

L. J. Murray, M. Dincă, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294

[6]

S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580

[7]

H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875

[8]

L. Zaluski and A. Zaluska, J. Alloys Comp., 1997, 253(1-2): 70

[9]

L. Schlapbach and A. Züttel, Nature, 2001, 414(6861): 353

[10]

D. Ohlendorf and H. E. Flotow, J. Chem. Phys., 1980, 73(6): 2937

[11]

S. Srivastava and O. N. Srivastava, J. Alloys Comp., 1999, 290: 250

[12]

K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B, 2001, 64(18): 184105

[13]

J. H. Sanders and B. J. Tatarchuk, J. Less Common Met., 1989, 147(2): 277

[14]

J. H. Woo and K. S. Lee, J. Electrochem. Soc., 1999, 146(3): 819

[15]

Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc., 2008, 18(4): 857

[16]

Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp., 2002, 337: 214

[17]

N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30(1): 53

[18]

C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta, 1996, 41: 2694

[19]

Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp., 2004, 365: 246

[20]

S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp., 2008, 465: 517

[21]

Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy, 2008, 33: 1868

[22]

S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp., 2009, 485: 867

[23]

Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy, 2009, 34(3): 1399

[24]

L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. J. Schulz, Mater. Sci., 1996, 31: 695

[25]

H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp., 2003, 356-357: 755

[26]

T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp., 2005, 404-406: 511

[27]

L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy, 2008, 33(2): 201

[28]

D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp., 2009, 478: 96

[29]

Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp., 2009, 480: 750

[30]

Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp., 2004, 381(1-2): 234

[31]

X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(7): 649

[32]

J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 2000, 25(8): 767

[33]

W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy, 2003, 113: 151

[34]

T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys., 2005, 93: 544

[35]

M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy, 2008, 33(14): 3754

[36]

K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp., 2009, 477: 749

[37]

R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater., 2006, 54(2): 465

[38]

Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp., 2005, 397: 68

[39]

S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp., 1990, 293: 10

[40]

D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy, 2003, 28(12): 1425

[41]

S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 2000, 25(2): 143

[42]

F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys., 2009, 105(4): 043707

[43]

M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64(4): 1045

[44]

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 2005, 220(5-6): 567

[45]

J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244

[46]

M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys., 2003, 291(1): 53

[47]

D. Vanderbilt, Phys. Rev. B, 1990, 41(11): 7892

[48]

T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 397: 284

[49]

J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp., 1995, 231(1-2): 760

[50]

L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (198KB)

1072

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/