Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles
Fen LI, Ji-jun ZHAO, Li-xian SUN
Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles
The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.
alloy / hydrogen storage / doping / first-principles
[1] |
Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94(15): 155504
CrossRef
ADS
Google scholar
|
[2] |
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944
CrossRef
ADS
Google scholar
|
[3] |
J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670
CrossRef
ADS
Google scholar
|
[4] |
D. J. Collins and H. C. Zhou, J. Mater. Chem., 2007, 17(30): 3154
CrossRef
ADS
Google scholar
|
[5] |
L. J. Murray, M. Dincă, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294
CrossRef
ADS
Google scholar
|
[6] |
S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580
CrossRef
ADS
Google scholar
|
[7] |
H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875
CrossRef
ADS
Google scholar
|
[8] |
L. Zaluski and A. Zaluska, J. Alloys Comp., 1997, 253(1-2): 70
|
[9] |
L. Schlapbach and A. Züttel, Nature, 2001, 414(6861): 353
CrossRef
ADS
Google scholar
|
[10] |
D. Ohlendorf and H. E. Flotow, J. Chem. Phys., 1980, 73(6): 2937
CrossRef
ADS
Google scholar
|
[11] |
S. Srivastava and O. N. Srivastava, J. Alloys Comp., 1999, 290: 250
|
[12] |
K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B, 2001, 64(18): 184105
CrossRef
ADS
Google scholar
|
[13] |
J. H. Sanders and B. J. Tatarchuk, J. Less Common Met., 1989, 147(2): 277
CrossRef
ADS
Google scholar
|
[14] |
J. H. Woo and K. S. Lee, J. Electrochem. Soc., 1999, 146(3): 819
CrossRef
ADS
Google scholar
|
[15] |
Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc., 2008, 18(4): 857
CrossRef
ADS
Google scholar
|
[16] |
Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp., 2002, 337: 214
|
[17] |
N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30(1): 53
CrossRef
ADS
Google scholar
|
[18] |
C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta, 1996, 41: 2694
|
[19] |
Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp., 2004, 365: 246
|
[20] |
S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp., 2008, 465: 517
|
[21] |
Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy, 2008, 33: 1868
CrossRef
ADS
Google scholar
|
[22] |
S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp., 2009, 485: 867
|
[23] |
Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy, 2009, 34(3): 1399
CrossRef
ADS
Google scholar
|
[24] |
L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. J. Schulz, Mater. Sci., 1996, 31: 695
CrossRef
ADS
Google scholar
|
[25] |
H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp., 2003, 356-357: 755
|
[26] |
T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp., 2005, 404-406: 511
|
[27] |
L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy, 2008, 33(2): 201
CrossRef
ADS
Google scholar
|
[28] |
D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp., 2009, 478: 96
|
[29] |
Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp., 2009, 480: 750
|
[30] |
Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp., 2004, 381(1-2): 234
|
[31] |
X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(7): 649
CrossRef
ADS
Google scholar
|
[32] |
J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 2000, 25(8): 767
CrossRef
ADS
Google scholar
|
[33] |
W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy, 2003, 113: 151
|
[34] |
T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys., 2005, 93: 544
CrossRef
ADS
Google scholar
|
[35] |
M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy, 2008, 33(14): 3754
CrossRef
ADS
Google scholar
|
[36] |
K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp., 2009, 477: 749
|
[37] |
R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater., 2006, 54(2): 465
CrossRef
ADS
Google scholar
|
[38] |
Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp., 2005, 397: 68
|
[39] |
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp., 1990, 293: 10
|
[40] |
D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy, 2003, 28(12): 1425
CrossRef
ADS
Google scholar
|
[41] |
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 2000, 25(2): 143
CrossRef
ADS
Google scholar
|
[42] |
F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys., 2009, 105(4): 043707
CrossRef
ADS
Google scholar
|
[43] |
M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64(4): 1045
CrossRef
ADS
Google scholar
|
[44] |
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 2005, 220(5-6): 567
CrossRef
ADS
Google scholar
|
[45] |
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244
CrossRef
ADS
Google scholar
|
[46] |
M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys., 2003, 291(1): 53
CrossRef
ADS
Google scholar
|
[47] |
D. Vanderbilt, Phys. Rev. B, 1990, 41(11): 7892
CrossRef
ADS
Google scholar
|
[48] |
T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 397: 284
CrossRef
ADS
Google scholar
|
[49] |
J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp., 1995, 231(1-2): 760
|
[50] |
L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970
|
/
〈 | 〉 |