Challenges in hydrogen adsorptions: from physisorption to chemisorption

Feng DING, Boris I. YAKOBSON

PDF(497 KB)
PDF(497 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 142-150. DOI: 10.1007/s11467-011-0171-6
REVIEW ARTICLE
REVIEW ARTICLE

Challenges in hydrogen adsorptions: from physisorption to chemisorption

Author information +
History +

Abstract

In this short review, we will briefly discuss the story of hydrogen storage, its impact on clean energy application, especially the challenges of using hydrogen adsorption for onboard application. After a short comparison of the main methods of hydrogen storage (high pressure tank, metal hydride and adsorption), we will focus our discussion on adsorption of hydrogen in graphitic carbon based large surface area adsorbents including carbon nanotubes, graphene and metal organic frameworks. The mechanisms, advantages, disadvantages and recent progresses will be discussed and reviewed for physisorption, metal-assisted storage and chemisorption. In the last section, we will discuss hydrogen spillover chemisorption in detail for the mechanism, status, challenges and perspectives. We hope to present a clear picture of the present technologies, challenges and the perspectives of hydrogen storage for the future studies.

Keywords

hydrogen storage / physisorption / chemisorption / spillover

Cite this article

Download citation ▾
Feng DING, Boris I. YAKOBSON. Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front. Phys., 2011, 6(2): 142‒150 https://doi.org/10.1007/s11467-011-0171-6

References

[1]
J. Cieslik, P. Kula, and R. Sato, J. Alloys Comp., 2011, 509(9): 3972
[2]
S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C, 2008, 112(14): 5258
[3]
S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C, 2007, 111(4): 1584
[4]
K. M. Thomas, Dalton Trans., 2009, (9): 1487
[5]
B. Xiao, P. S. Wheatley, X. B. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga, L. Regli, K. M. Thomas, and R. E. Morris, J. Am. Chem. Soc., 2007, 129(5): 1203
[6]
S. C. Wang, L. Senbetu, and C. Woo, J. Low Temp. Phys., 1980, 41(5-6): 611
[7]
L. F. Wang and R. T. Yang, Catal. Rev. Sci. Eng., 2010, 52(4): 411
[8]
M. M. Biswas and T. Cagin, J. Phys. Chem. B, 2010, 114(43): 13752
[9]
A. D. Leonard, J. L. Hudson, H. Fan, R. Booker, L. J. Simpson, K. J. O’Neill, P. A. Parilla, M. J. Heben, M. Pasquali, C. Kittrell, and J. M. Tour, J. Am. Chem. Soc., 2009, 131(2): 723
[10]
M. Dinca and J. R. Long, Angew. Chem. Int. Ed., 2008, 47(36): 6766
[11]
M. Dinca, A. F. Yu, and J. R. Long, J. Am. Chem. Soc., 2006, 128(27): 8904
[12]
L. J. Murray, M. Dincǎ, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294
[13]
J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670
[14]
Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94: 145554
[15]
Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94: 145554
[16]
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501
[17]
T. Yildirim, J. Íñiguez, and S. Ciraci, Phys. Rev. B, 2005, 72(15): 153403
[18]
M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett., 2008, 100(20): 206806
[19]
M. Yoon, S. Y. Yang, E. Wang, and Z. Y. Zhang, Nano Lett., 2007, 7(9): 2578
[20]
J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Proc. Natl. Acad. Sci. USA, 2010, 107(7): 2801
[21]
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128(30): 9741
[22]
Q. Sun, Q.Wang, and P. Jena, Appl. Phys. Lett., 2009, 94(1): 013111
[23]
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944
[24]
M. H. Shang, S. H. Wei, and Y. J. Zhu, J. Phys. Chem. C, 2009, 113(35): 15507
[25]
N. S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, and Y. Kawazoe, Chem. Phys., 2009, 359(1-3): 173
[26]
X. J. Wu, J. L. Yang, and X. C. Zeng, J. Chem. Phys., 2006, 125(4): 044704
[27]
H. L. Park and Y. C. Chung, Comput. Mater. Sci., 2010, 49(4): S297
[28]
L. Wang, K. Lee, Y. Y. Sun, M. Lucking, Z. F. Chen, J. J. Zhao, and S. B. B. Zhang, ACS Nano, 2009, 3(10): 2995
[29]
Y. Wang, C. X. Guo, X. Wang, C. Guan, H. B. Yang, K. A. Wang, and C. M. Li, Energy & Environ. Sci., 2011, 4(1): 195
[30]
S. Iijima, Nature, 1991, 354(6348): 56
[31]
S. Iijima and T. Ichihashi, Nature, 1993, 363(6430): 603
[32]
A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. Heben, Nature, 1997, 386(6623): 377
[33]
C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science, 1999, 286(5442): 1127
[34]
M. K. Kostov, H. Cheng, A. C. Cooper, and G. P. Pez, Phys. Rev. Lett., 2002, 89(14): 146105
[35]
H. Cheng, A. C. Cooper, and G. P. Pez, J. Chem. Phys., 2004, 120(19): 9427, author reply 9430
[36]
J. Miyamoto, Y. Hattori, D. Noguchi, H. Tanaka, T. Ohba, S. Utsumi, H. Kanoh, Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, and K. Kaneko, J. Am. Chem. Soc., 2006, 128(39): 12636
[37]
V. V. Simonyan, P. Diep, and J. K. Johnson, J. Chem. Phys., 1999, 111(21): 9778
[38]
Q.Wang and J. K. Johnson, J. Phys. Chem. B, 1999, 103(23): 4809
[39]
F. Ding, Y. Lin, P. O. Krasnov, and B. I. Yakobson, J. Chem. Phys., 2007, 127(16): 164703
[40]
H. Cheng, G. P. Pez, and A. C. Cooper, J. Am. Chem. Soc., 2001, 123(24): 5845
[41]
H. M. Cheng, Q. H. Yang, and C. Liu, Carbon, 2001, 39(10): 1447
[42]
R. G. Ding, G. Q. Lu, Z. F. Yan, and M. A. Wilson, J. Nanosci. Nanotechnol., 2001, 1(1): 7
[43]
Y. P. Zhou, K. Feng, Y. Sun, and L. Zhou, Progress in Chemistry, 2003, 15(5): 345
[44]
J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, J. Chem. Phys., 2003, 119(4): 2376
[45]
H.M. Cheng and M. S. Dresselhaus, Science, 2000, 287(5453): 593
[46]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, , Gaussian 03, Revision C. 02, Wallingford: Gaussian, Inc., 2004
[47]
Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2006, 96(1): 016102
[48]
G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc., 1984, 106(2): 451
[49]
G. Kubas, Acc. Chem. Res., 1988, 21: 120
[50]
E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett., 2006, 97(22): 226102
[51]
W. H. Shin, S. H. Yang, I. I. I. WAG, and J. K. Kanga, Appl. Phys. Lett., 2006, 88: 05311
[52]
S. S. Han and A. William, J. Am. Chem. Soc., 2007, 129(27): 8422
[53]
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128(30): 9741
[54]
P. O. Krasnov, F. Ding, A. K. Singh, and B. I. Yakobson, J. Phys. Chem. C, 2007, 111(49): 17977
[55]
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127(42): 14582
[56]
Y. Lin, F. Ding, and B. I. Yakobson, Phys. Rev. B, 2008, 78(4): 041402 (R)
[57]
S. J. Teichner, Appl. Catal., 1990, 62(1): 1
[58]
L. F. Wang and R. T. Yang, Energy & Environ. Sci., 2008, 1(2): 268
[59]
Y. A. Zolotarev, A. K. Dadayan, Y. A. Borisov, and V. S. Kozik, Chem. Rev., 2010, 110(9): 5425
[60]
Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128(3): 726
[61]
G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, J. Phys. Chem. C, 2010, 114(27): 11753
[62]
J. O. Sofo, A. Chaudhari, and G. D. Barber, Phys. Rev. B, 2007, 75(15): 153401s

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(497 KB)

Accesses

Citations

Detail

Sections
Recommended

/