Quantum simulation of molecular interaction and dynamics at surfaces

Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜)

PDF(591 KB)
PDF(591 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 294-308. DOI: 10.1007/s11467-011-0163-6
REVIEW ARTICLE
REVIEW ARTICLE

Quantum simulation of molecular interaction and dynamics at surfaces

Author information +
History +

Abstract

The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronics, and solar cells. Surprisingly, a full understanding of molecule–surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron–ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule–surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.

Keywords

adsorption / quantum simulation / density functional theory / electronic structure / electron dynamics

Cite this article

Download citation ▾
Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces. Front. Phys., 2011, 6(3): 294‒308 https://doi.org/10.1007/s11467-011-0163-6

References

[1]
M. Grätzel, Acc. Chem. Res., 2009, 42: 1788
CrossRef ADS Google scholar
[2]
S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 2009, 3: 297
CrossRef ADS Google scholar
[3]
For example, the very popular TIP3P model of water produces an OO distance of 2.75 Å and hydrogen bond angles of -4° and 158° in a water dimer, which are different from the corresponding values in first-principles calculations (2.95 Å, 5°, 125°) and experiment (2.98 Å, -1°, 123°). See S. Meng, Chapter 3, <DissertationTip/>. dissertation, Graduatue School of Chinese Academy of Sciences, Beijing, 2004
[4]
S. Meng, L. F. Xu, E. G. Wang, and S. W. Gao, Phys. Rev. Lett., 2002, 89: 176104
CrossRef ADS Google scholar
[5]
S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B, 2004, 69: 195404
CrossRef ADS Google scholar
[6]
S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. W. Gao, Chem. Phys. Lett., 2005, 402: 384
CrossRef ADS Google scholar
[7]
J. Ren and S. Meng, J. Am. Chem. Soc., 2006, 128: 9282
CrossRef ADS Google scholar
[8]
J. Ren and S. Meng, Phys. Rev. B, 2008, 77: 054110
CrossRef ADS Google scholar
[9]
P. J. Feibelman, Science, 2002, 295: 99
CrossRef ADS Google scholar
[10]
J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater., 2009, 8: 427
CrossRef ADS Google scholar
[11]
S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Nano Lett., 2007, 7, 45
CrossRef ADS Google scholar
[12]
S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Nano Lett., 2007, 7: 2312
CrossRef ADS Google scholar
[13]
S. Meng, J. Ren, and E. Kaxiras, Nano Lett., 2008, 8: 3266
CrossRef ADS Google scholar
[14]
S. Meng and E. Kaxiras, Nano Lett., 2010, 10: 1238
CrossRef ADS Google scholar
[15]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745
CrossRef ADS Google scholar
[16]
P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864
CrossRef ADS Google scholar
[17]
W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133
CrossRef ADS Google scholar
[18]
G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef ADS Google scholar
[19]
P. E. Blöchl, Phys. Rev. B, 1994, 50: 17953
CrossRef ADS Google scholar
[20]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[21]
D. R. Hamann, Phys. Rev. B, 1997, 55: 10157
CrossRef ADS Google scholar
[22]
S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem., 1999, 75: 889
CrossRef ADS Google scholar
[23]
N. Troullier and J. L. Martins, Phys. Rev. B, 1991, 43: 1993
CrossRef ADS Google scholar
[24]
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45: 566
CrossRef ADS Google scholar
[25]
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92: 246401
CrossRef ADS Google scholar
[26]
J. Ren, E. Kaxiras, and S. Meng, Mole. Phys., 2010, 108: 1829
CrossRef ADS Google scholar
[27]
E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52: 997
CrossRef ADS Google scholar
[28]
S. Meng and E. Kaxiras, J. Chem. Phys., 2008, 129: 054110
CrossRef ADS Google scholar
[29]
P. A. Thiel and T. E. Madey, Surf. Sci. Rep., 1987, 7: 211
CrossRef ADS Google scholar
[30]
A. Hodgson and S. Haq, Surf. Sci. Rep., 2009, 64: 381
CrossRef ADS Google scholar
[31]
G. Held and D. Menzel, Surf. Sci., 1994, 316: 92
CrossRef ADS Google scholar
[32]
D. N. Denzler, C. Hess, R. Dudek, S. Wagner, C. Frischkorn, M. Wolf, and G. Ertl, Chem. Phys. Lett., 2003, 376: 618
CrossRef ADS Google scholar
[33]
K. Jacobi, K. Bedurftig, Y. Wang, and G. Ertl, Surf. Sci., 2001, 472: 9
CrossRef ADS Google scholar
[34]
H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett., 2002, 89: 276102
CrossRef ADS Google scholar
[35]
S. Meng, L. F. Xu, E. G. Wang, S. W. Gao, Phys. Rev. Lett., 2003, 91: 059602
CrossRef ADS Google scholar
[36]
S. Meng, Surf. Sci., 2005, 575: 300
CrossRef ADS Google scholar
[37]
A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, J. Chem. Phys., 1997, 106: 9382
CrossRef ADS Google scholar
[38]
S. Haq, J. Harnett, and A. Hodgson, Surf. Sci., 2002, 505: 171
CrossRef ADS Google scholar
[39]
S. Nie, P. J. Feibelman, N. C. Bartelt, and K. Thürmer, Phys. Rev. Lett., 2010, 105: 026102
CrossRef ADS Google scholar
[40]
T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. Öström, K. Andersson, L. G. M. Pettersson, A. Hodgson, and A. Nilsson, Chem. Phys. Lett., 2006, 429: 415
CrossRef ADS Google scholar
[41]
G. Held and D. Menzel, Phys. Rev. Lett., 1995, 74: 4221
CrossRef ADS Google scholar
[42]
M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett., 1996, 77: 703
CrossRef ADS Google scholar
[43]
T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett., 2006, 96: 036105
CrossRef ADS Google scholar
[44]
J. J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett., 2004, 92: 146102
CrossRef ADS Google scholar
[45]
Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B, 2006, 74: 245409
CrossRef ADS Google scholar
[46]
J. Lee, D. C. Sorescu, K. D. Jordan, and J. T. Yates, J. Phys. Chem. C, 2008, 112: 17672
CrossRef ADS Google scholar
[47]
T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science, 2002, 297: 1850
CrossRef ADS Google scholar
[48]
V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett., 2004, 92: 136104
CrossRef ADS Google scholar
[49]
S. Meng, E. G. Wang, and S. W. Gao, J. Chem. Phys., 2003, 119: 7617
CrossRef ADS Google scholar
[50]
K. Morgenstern and J. Nieminen, Phys. Rev. Lett., 2002, 88: 066102
CrossRef ADS Google scholar
[51]
A. Michaelides and K. Morgenstern, Nat. Mater., 2007, 6: 597
CrossRef ADS Google scholar
[52]
S. Meng, E. Kaxiras, and Z. Y. Zhang, J. Chem. Phys., 2007, 127: 244710
CrossRef ADS Google scholar
[53]
M. E. Tuckerman, D. Marx, and M. Parrinello, Nature, 2002, 417: 925
CrossRef ADS Google scholar
[54]
J. E. Gunn and B. A. Peterson, Astrophys. J., 1965, 142: 1633
CrossRef ADS Google scholar
[55]
D. Marx, M. E. Tuckerman, J. Hütter, and M. Parrinello, Nature, 1999, 397: 601
CrossRef ADS Google scholar
[56]
K. Andersson, A. Nikitin, L. G. M. Pettersson, A. Nilsson, and H. Ogasawara, Phys. Rev. Lett., 2004, 93: 196101
CrossRef ADS Google scholar
[57]
C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett., 2004, 388: 89
CrossRef ADS Google scholar
[58]
X. Z. Li, M. I. J. Probert, A. Alavi, and A. Michaelides, Phys. Rev. Lett., 2010, 104: 066102
CrossRef ADS Google scholar
[59]
R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci., 1996, 367: L13
CrossRef ADS Google scholar
[60]
P. Löfgren, P. Ahlström, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci., 1996, 367: L19
CrossRef ADS Google scholar
[61]
S. Meng, Z. Zhang, and E. Kaxiras, Phys. Rev. Lett., 2006, 97: 036107
CrossRef ADS Google scholar
[62]
M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater., 2003, 2: 338
CrossRef ADS Google scholar
[63]
M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science, 2003, 302: 1545
CrossRef ADS Google scholar
[64]
B. Gigliotti, B. Sakizzie, D. S. Bethune, R. M. Shelby, and J. N. Cha, Nano Lett., 2006, 6: 159
CrossRef ADS Google scholar
[65]
D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano, Science, 2006, 311: 508
CrossRef ADS Google scholar
[66]
Y. Xu, P. E. Pehrsson, L. Chen, R. Zhang, and W. Zhao, J. Phys. Chem. C, 2007, 111: 8638
CrossRef ADS Google scholar
[67]
G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Y. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mole. Phys., 2006, 104: 3193
CrossRef ADS Google scholar
[68]
H. J. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett., 2003, 3: 471
CrossRef ADS Google scholar
[69]
H. J. Gao and Y. Kong, Annu. Rev. Mater. Res., 2004, 34: 123
CrossRef ADS Google scholar
[70]
T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji, Chem. Phys. Lett., 2006, 417: 288
CrossRef ADS Google scholar
[71]
J. D. Watson and F. H. C. Crick, Nature, 1953, 171: 737
CrossRef ADS Google scholar
[72]
S. Iijima, Nature, 1991, 354: 56
CrossRef ADS Google scholar
[73]
J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett., 2003, 3: 597
CrossRef ADS Google scholar
[74]
N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew. Chem. Int. Ed., 2006, 45: 577
CrossRef ADS Google scholar
[75]
C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, Nano Lett., 2005, 5: 1774
CrossRef ADS Google scholar
[76]
G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett., 2005, 5: 897
CrossRef ADS Google scholar
[77]
A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103: 921
CrossRef ADS Google scholar
[78]
E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett., 2006, 6: 371
CrossRef ADS Google scholar
[79]
B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem., 1983, 4: 187
CrossRef ADS Google scholar
[80]
A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B, 1998, 102: 3586
[81]
S. V. Krivov, S. F. Chekmarev, and M. Karplus, Phys. Rev. Lett., 2002, 88: 038101
CrossRef ADS Google scholar
[82]
R. Elber and M. Karplus, Science, 1987, 235: 318
CrossRef ADS Google scholar
[83]
D. J. Wales and H. A. Scheraga, Science, 1999, 285: 1368
CrossRef ADS Google scholar
[84]
D. J. Wales, Science, 2001, 293: 2067
CrossRef ADS Google scholar
[85]
F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 95: 186101
CrossRef ADS Google scholar
[86]
J. E. Freund, <DissertationTip/>, Ludwig–Mmaximilians Universität München, 1998
[87]
A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology, 2007, 18: 245702
CrossRef ADS Google scholar
[88]
C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett., 2007, 439: 138
CrossRef ADS Google scholar
[89]
M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 94: 236102
CrossRef ADS Google scholar
[90]
J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31: 805
CrossRef ADS Google scholar
[91]
M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett., 2007, 7: 1191
CrossRef ADS Google scholar
[92]
Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett., 2005, 94: 087402
CrossRef ADS Google scholar
[93]
J. Rajendra and A. Rodger, Chem. Eur. J., 2005, 11: 4841
CrossRef ADS Google scholar
[94]
J. Schnadt, P. A. Bruhwiler, L. Patthey, J. N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature, 2002, 418: 620
CrossRef ADS Google scholar
[95]
S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc., 2005, 127: 3456
CrossRef ADS Google scholar
[96]
J. B. Asbury, E. Hao, Y. Wang, and T. Lian, J. Phys. Chem. B, 2000, 104: 11957
CrossRef ADS Google scholar
[97]
C. W. Chang, L. Luo, C. K. Chou, C. F. Lo, C. Y. Lin, C. S. Hung, Y. P. Lee, and E. W. Diau, J. Phys. Chem. C, 2009, 113: 11524
CrossRef ADS Google scholar
[98]
L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater., 2010, 9: 741
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(591 KB)

Accesses

Citations

Detail

Sections
Recommended

/