Quantum simulation of molecular interaction and dynamics at surfaces

DING (丁子敬)Zi-jing , JIAO (焦扬)Yang , MENG (孟胜)Sheng

Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 294 -308.

PDF (591KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 294 -308. DOI: 10.1007/s11467-011-0163-6
REVIEW ARTICLE

Quantum simulation of molecular interaction and dynamics at surfaces

Author information +
History +
PDF (591KB)

Abstract

The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronics, and solar cells. Surprisingly, a full understanding of molecule–surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron–ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule–surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.

Keywords

adsorption / quantum simulation / density functional theory / electronic structure / electron dynamics

Cite this article

Download citation ▾
DING (丁子敬)Zi-jing, JIAO (焦扬)Yang, MENG (孟胜)Sheng. Quantum simulation of molecular interaction and dynamics at surfaces. Front. Phys., 2011, 6(3): 294-308 DOI:10.1007/s11467-011-0163-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Grätzel, Acc. Chem. Res., 2009, 42: 1788

[2]

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 2009, 3: 297

[3]

For example, the very popular TIP3P model of water produces an OO distance of 2.75 Å and hydrogen bond angles of -4° and 158° in a water dimer, which are different from the corresponding values in first-principles calculations (2.95 Å 5° 125°) and experiment (2.98 Å -1° 123°). See S. Meng, Chapter 3, <DissertationTip/>. dissertation, Graduatue School of Chinese Academy of Sciences, Beijing, 2004

[4]

S. Meng, L. F. Xu, E. G. Wang, and S. W. Gao, Phys. Rev. Lett., 2002, 89: 176104

[5]

S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B, 2004, 69: 195404

[6]

S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. W. Gao, Chem. Phys. Lett., 2005, 402: 384

[7]

J. Ren and S. Meng, J. Am. Chem. Soc., 2006, 128: 9282

[8]

J. Ren and S. Meng, Phys. Rev. B, 2008, 77: 054110

[9]

P. J. Feibelman, Science, 2002, 295: 99

[10]

J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater., 2009, 8: 427

[11]

S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Nano Lett., 2007, 7, 45

[12]

S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Nano Lett., 2007, 7: 2312

[13]

S. Meng, J. Ren, and E. Kaxiras, Nano Lett., 2008, 8: 3266

[14]

S. Meng and E. Kaxiras, Nano Lett., 2010, 10: 1238

[15]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745

[16]

P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864

[17]

W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133

[18]

G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169

[19]

P. E. Blöchl, Phys. Rev. B, 1994, 50: 17953

[20]

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865

[21]

D. R. Hamann, Phys. Rev. B, 1997, 55: 10157

[22]

S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem., 1999, 75: 889

[23]

N. Troullier and J. L. Martins, Phys. Rev. B, 1991, 43: 1993

[24]

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45: 566

[25]

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92: 246401

[26]

J. Ren, E. Kaxiras, and S. Meng, Mole. Phys., 2010, 108: 1829

[27]

E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52: 997

[28]

S. Meng and E. Kaxiras, J. Chem. Phys., 2008, 129: 054110

[29]

P. A. Thiel and T. E. Madey, Surf. Sci. Rep., 1987, 7: 211

[30]

A. Hodgson and S. Haq, Surf. Sci. Rep., 2009, 64: 381

[31]

G. Held and D. Menzel, Surf. Sci., 1994, 316: 92

[32]

D. N. Denzler, C. Hess, R. Dudek, S. Wagner, C. Frischkorn, M. Wolf, and G. Ertl, Chem. Phys. Lett., 2003, 376: 618

[33]

K. Jacobi, K. Bedurftig, Y. Wang, and G. Ertl, Surf. Sci., 2001, 472: 9

[34]

H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett., 2002, 89: 276102

[35]

S. Meng, L. F. Xu, E. G. Wang, S. W. Gao, Phys. Rev. Lett., 2003, 91: 059602

[36]

S. Meng, Surf. Sci., 2005, 575: 300

[37]

A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, J. Chem. Phys., 1997, 106: 9382

[38]

S. Haq, J. Harnett, and A. Hodgson, Surf. Sci., 2002, 505: 171

[39]

S. Nie, P. J. Feibelman, N. C. Bartelt, and K. Thürmer, Phys. Rev. Lett., 2010, 105: 026102

[40]

T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. Öström, K. Andersson, L. G. M. Pettersson, A. Hodgson, and A. Nilsson, Chem. Phys. Lett., 2006, 429: 415

[41]

G. Held and D. Menzel, Phys. Rev. Lett., 1995, 74: 4221

[42]

M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett., 1996, 77: 703

[43]

T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett., 2006, 96: 036105

[44]

J. J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett., 2004, 92: 146102

[45]

Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B, 2006, 74: 245409

[46]

J. Lee, D. C. Sorescu, K. D. Jordan, and J. T. Yates, J. Phys. Chem. C, 2008, 112: 17672

[47]

T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science, 2002, 297: 1850

[48]

V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett., 2004, 92: 136104

[49]

S. Meng, E. G. Wang, and S. W. Gao, J. Chem. Phys., 2003, 119: 7617

[50]

K. Morgenstern and J. Nieminen, Phys. Rev. Lett., 2002, 88: 066102

[51]

A. Michaelides and K. Morgenstern, Nat. Mater., 2007, 6: 597

[52]

S. Meng, E. Kaxiras, and Z. Y. Zhang, J. Chem. Phys., 2007, 127: 244710

[53]

M. E. Tuckerman, D. Marx, and M. Parrinello, Nature, 2002, 417: 925

[54]

J. E. Gunn and B. A. Peterson, Astrophys. J., 1965, 142: 1633

[55]

D. Marx, M. E. Tuckerman, J. Hütter, and M. Parrinello, Nature, 1999, 397: 601

[56]

K. Andersson, A. Nikitin, L. G. M. Pettersson, A. Nilsson, and H. Ogasawara, Phys. Rev. Lett., 2004, 93: 196101

[57]

C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett., 2004, 388: 89

[58]

X. Z. Li, M. I. J. Probert, A. Alavi, and A. Michaelides, Phys. Rev. Lett., 2010, 104: 066102

[59]

R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci., 1996, 367: L13

[60]

P. Löfgren, P. Ahlström, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci., 1996, 367: L19

[61]

S. Meng, Z. Zhang, and E. Kaxiras, Phys. Rev. Lett., 2006, 97: 036107

[62]

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater., 2003, 2: 338

[63]

M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science, 2003, 302: 1545

[64]

B. Gigliotti, B. Sakizzie, D. S. Bethune, R. M. Shelby, and J. N. Cha, Nano Lett., 2006, 6: 159

[65]

D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano, Science, 2006, 311: 508

[66]

Y. Xu, P. E. Pehrsson, L. Chen, R. Zhang, and W. Zhao, J. Phys. Chem. C, 2007, 111: 8638

[67]

G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Y. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mole. Phys., 2006, 104: 3193

[68]

H. J. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett., 2003, 3: 471

[69]

H. J. Gao and Y. Kong, Annu. Rev. Mater. Res., 2004, 34: 123

[70]

T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji, Chem. Phys. Lett., 2006, 417: 288

[71]

J. D. Watson and F. H. C. Crick, Nature, 1953, 171: 737

[72]

S. Iijima, Nature, 1991, 354: 56

[73]

J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett., 2003, 3: 597

[74]

N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew. Chem. Int. Ed., 2006, 45: 577

[75]

C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, Nano Lett., 2005, 5: 1774

[76]

G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett., 2005, 5: 897

[77]

A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103: 921

[78]

E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett., 2006, 6: 371

[79]

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem., 1983, 4: 187

[80]

A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B, 1998, 102: 3586

[81]

S. V. Krivov, S. F. Chekmarev, and M. Karplus, Phys. Rev. Lett., 2002, 88: 038101

[82]

R. Elber and M. Karplus, Science, 1987, 235: 318

[83]

D. J. Wales and H. A. Scheraga, Science, 1999, 285: 1368

[84]

D. J. Wales, Science, 2001, 293: 2067

[85]

F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 95: 186101

[86]

J. E. Freund, <DissertationTip/> Ludwig–Mmaximilians Universität München, 1998

[87]

A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology, 2007, 18: 245702

[88]

C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett., 2007, 439: 138

[89]

M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 94: 236102

[90]

J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31: 805

[91]

M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett., 2007, 7: 1191

[92]

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett., 2005, 94: 087402

[93]

J. Rajendra and A. Rodger, Chem. Eur. J., 2005, 11: 4841

[94]

J. Schnadt, P. A. Bruhwiler, L. Patthey, J. N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature, 2002, 418: 620

[95]

S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc., 2005, 127: 3456

[96]

J. B. Asbury, E. Hao, Y. Wang, and T. Lian, J. Phys. Chem. B, 2000, 104: 11957

[97]

C. W. Chang, L. Luo, C. K. Chou, C. F. Lo, C. Y. Lin, C. S. Hung, Y. P. Lee, and E. W. Diau, J. Phys. Chem. C, 2009, 113: 11524

[98]

L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater., 2010, 9: 741

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (591KB)

949

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/