Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons

Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维)

PDF(277 KB)
PDF(277 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 313-319. DOI: 10.1007/s11467-011-0162-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons

Author information +
History +

Abstract

Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter–nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.

Keywords

quantum plasmonics / quantum optics / metallic nanowire / surface plasmon (SP) / quantum dot

Cite this article

Download citation ▾
Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons. Front. Phys., 2011, 6(3): 313‒319 https://doi.org/10.1007/s11467-011-0162-7

References

[1]
S. Nie and S. R. Emory, Science, 1997, 275: 1102
CrossRef ADS Google scholar
[2]
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett., 1997, 78: 1667
CrossRef ADS Google scholar
[3]
H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, Phys. Rev. E, 2000, 62: 4318
CrossRef ADS Google scholar
[4]
H. X. Xu, X. H. Wang, M. Persson, H. Q. Xu, M. Käll, and P. Johansson, Phys. Rev. Lett., 2004, 93: 243002
CrossRef ADS Google scholar
[5]
I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett., 2005, 94: 057401
CrossRef ADS Google scholar
[6]
G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, Nature Methods, 2007, 4: 1015
CrossRef ADS Google scholar
[7]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, L. Dai, G. Bartal, and X. Zhang, Nature, 2009, 461: 629
CrossRef ADS Google scholar
[8]
G. C. Shan and W. Huang, J. Nanosci. Nanotechnol., 2009, 9: 1176
CrossRef ADS Google scholar
[9]
A. K. Ekert, Phys. Rev. Lett., 1991, 67: 661
CrossRef ADS Google scholar
[10]
R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett., 1992, 68: 1132
CrossRef ADS Google scholar
[11]
D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett., 2006, 97: 053002
CrossRef ADS Google scholar
[12]
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys., 2007, 3: 807
CrossRef ADS Google scholar
[13]
L. Childress, A. S. Sørensen, and M. D. Lukin, Phys. Rev. A, 2004, 69: 042302
CrossRef ADS Google scholar
[14]
A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature, 2007, 450: 402
CrossRef ADS Google scholar
[15]
Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A, 2009, 79: 033815
CrossRef ADS Google scholar
[16]
D. Dzsotjan, A. S. Sorensen, and M. Fleischhauer, Phys. Rev. B, 2010, 82: 075427
CrossRef ADS Google scholar
[17]
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1999
[18]
H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
[19]
J. M. Wylie and J. E. Sipe, Phys. Rev. A, 1984, 30: 1185
CrossRef ADS Google scholar
[20]
V. V. Klimov and M. Ducloy, Phys. Rev. A, 2004, 69: 013812
CrossRef ADS Google scholar
[21]
P. B. Johnson and R. W. Christy, Phys. Rev. B, 1972, 6: 4370
CrossRef ADS Google scholar
[22]
J. D. Jackson, Classical Electrodynamics, New York: Wiley, 1999
[23]
G. C. Shan and W. Huang, Front. Phys. China, 2006, 1(4): 405
CrossRef ADS Google scholar
[24]
S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett., 2006, 97: 017402
CrossRef ADS Google scholar
[25]
D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B, 2007, 76: 035420
CrossRef ADS Google scholar
[26]
H. Wei, D. Ratchford, X. Q. Li, H. X. Xu, and C. K. Shih, Nano Lett., 2009, 9: 4168
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/