Diffraction of entangled photon pairs by ultrasonic waves

Lü-bi Deng (邓履璧)

PDF(238 KB)
PDF(238 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 239-243. DOI: 10.1007/s11467-011-0158-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Diffraction of entangled photon pairs by ultrasonic waves

Author information +
History +

Abstract

In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral approach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman–Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.

Keywords

atom optics / diffraction and interference / path integral

Cite this article

Download citation ▾
Lü-bi Deng (邓履璧). Diffraction of entangled photon pairs by ultrasonic waves. Front. Phys., 2012, 7(2): 239‒243 https://doi.org/10.1007/s11467-011-0158-3

References

[1]
L. Brillouin, Ann. De Phyique, 1921, 17: 103
[2]
P. Debye andF. W. Sears, Proc. Natl. Acad. Sci., 1932, 18: 409
CrossRef ADS Google scholar
[3]
E. David, Z. Phys., 1937, 38: 587
[4]
S. Rytov, Diffraction de la Lumiére parles Ultrasons, Paris: Hermann, 1938
[5]
G. W. Willard, J. Acoust. Soc. Am., 1949, 21: 101
CrossRef ADS Google scholar
[6]
C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A, 1935, 2: 406
[7]
C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A, 1936, 3: 75–119
[8]
R. R. Aggarwal, Proc. Ind. Acad. Sci. A, 1950, 31: 417
[9]
A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A, 1953, 220: 356
CrossRef ADS Google scholar
[10]
A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A, 1953, 220: 369
CrossRef ADS Google scholar
[11]
A. Yariv, IEEE J. QuantumElectron., 1965, 1: 28
CrossRef ADS Google scholar
[12]
M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press,1999
[13]
A. Yariv, Optical Electronics, 3d Ed., New York: CBS College Publishing, 1985
[14]
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965
[15]
L. B. Deng, Front. Phys. China, 2006, 1(1): 47
CrossRef ADS Google scholar
[16]
L. B. Deng, Front. Phys. China, 2008, 3(1): 13
CrossRef ADS Google scholar
[17]
E. J. S. Fonseca, C. H. Monken, and S. Padua, Phys. Rev. Lett., 1999, 82: 2868
CrossRef ADS Google scholar
[18]
H. Z. Cummins and N. Knable, Proc. IEEE, 1963, 51: 1246
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(238 KB)

Accesses

Citations

Detail

Sections
Recommended

/