PDF
(238KB)
Abstract
In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral approach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman–Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.
Keywords
atom optics
/
diffraction and interference
/
path integral
Cite this article
Download citation ▾
Lü-bi Deng (邓履璧).
Diffraction of entangled photon pairs by ultrasonic waves.
Front. Phys., 2012, 7(2): 239-243 DOI:10.1007/s11467-011-0158-3
| [1] |
L. Brillouin, Ann. De Phyique, 1921, 17: 103
|
| [2] |
P. Debye andF. W. Sears, Proc. Natl. Acad. Sci., 1932, 18: 409
|
| [3] |
E. David, Z. Phys., 1937, 38: 587
|
| [4] |
S. Rytov, Diffraction de la Lumiére parles Ultrasons, Paris: Hermann, 1938
|
| [5] |
G. W. Willard, J. Acoust. Soc. Am., 1949, 21: 101
|
| [6] |
C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A, 1935, 2: 406
|
| [7] |
C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A, 1936, 3: 75–119
|
| [8] |
R. R. Aggarwal, Proc. Ind. Acad. Sci. A, 1950, 31: 417
|
| [9] |
A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A, 1953, 220: 356
|
| [10] |
A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A, 1953, 220: 369
|
| [11] |
A. Yariv, IEEE J. QuantumElectron., 1965, 1: 28
|
| [12] |
M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press,1999
|
| [13] |
A. Yariv, Optical Electronics, 3d Ed., New York: CBS College Publishing, 1985
|
| [14] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965
|
| [15] |
L. B. Deng, Front. Phys. China, 2006, 1(1): 47
|
| [16] |
L. B. Deng, Front. Phys. China, 2008, 3(1): 13
|
| [17] |
E. J. S. Fonseca, C. H. Monken, and S. Padua, Phys. Rev. Lett., 1999, 82: 2868
|
| [18] |
H. Z. Cummins and N. Knable, Proc. IEEE, 1963, 51: 1246
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg