Protein folding as a quantum transition between conformational states

PDF(231 KB)
PDF(231 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 133-140. DOI: 10.1007/s11467-010-0153-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Protein folding as a quantum transition between conformational states

Author information +
History +

Abstract

Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states.

Keywords

protein folding rate / quantum transition / torsion states / non-Arrhenius temperature dependence / exergonic and endergonic folding / ultrafast folding

Cite this article

Download citation ▾
. Protein folding as a quantum transition between conformational states. Front. Phys., 2011, 6(1): 133‒140 https://doi.org/10.1007/s11467-010-0153-0

References

[1]
L. F. Luo, Int. J. Quant. Chem., 1987, 32: 435
CrossRef ADS Google scholar
[2]
D. Shepelyansky, Symposium Anderson Localization in Nonlinear and Many-Body Systems, Dresden, 2009
[3]
J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins, 1995, 21: 167
CrossRef ADS Google scholar
[4]
K. Huang and A. Rhys, Proc. Roy. Soc. (London), 1950, A204: 406
[5]
D. Devault, Quart. Rev., Biophysics, 1980, 13: 387
CrossRef ADS Google scholar
[6]
J. Jortner, J. Chem. Phys., 1976, 64: 4860
CrossRef ADS Google scholar
[7]
M. Abramowitz and I. A. Stegun, Handbook of Mathemat-ical Functions, 10th printing with corrections, National Bureau of Standards, Applied Mathematics Series55, 1972
[8]
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Series: Cambridge Mathematical Library, 1995
[9]
L. F. Luo, Int. J. Quant. Chem., 1995, 54: 243
CrossRef ADS Google scholar
[10]
L. F. Luo, Theoretic-Physical Approach to Molecular Biology, Shanghai: Shanghai Scientific & Technical Publishers, 2004: 437, 457
[11]
L. F. Luo, arXiv: qbio/0906.2452, 2009
[12]
L. F. Luo, arXiv: qbio/1008.0237, 2010
[13]
T. Kakitani and H. Kakitani, Biochim. et Biophys. Acta, 1981, 635: 498
CrossRef ADS Google scholar
[14]
Y. Zhang and L. F. Luo, Scientia Sinica Vitae, 2010, 40: 887,
CrossRef ADS Google scholar
[15]
K. W Plaxco, T. Simons, and D. Baker, J. Mol. Biol., 1998, 277(4): 985
CrossRef ADS Google scholar
[16]
D. N. Ivankov and A. V. Finkelstein, Proc. Natl. Acad. Sci. USA, 2004, 101: 8942
CrossRef ADS Google scholar
[17]
K. Kamagata, M. Arai, and K. Kuwajima, J. Mol. Biol., 2004, 339: 951
CrossRef ADS Google scholar
[18]
K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallée-Bélisle, E. R. Main, F. BemporadL. Qiu, K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W. Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W. Plaxco, Protein Sci., 2005, 14(3): 602
CrossRef ADS Google scholar
[19]
M. Jacob, T. Schindler, J. Balbach, and F. X. Schmid, Proc. Natl. Acad. Sci. USA, 1997, 94 (11): 5622
CrossRef ADS Google scholar
[20]
L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc., 2002, 124(44): 12952
CrossRef ADS Google scholar
[21]
Y. Zhu, D. O. V. Alonso, K. Maki, C. Y. Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA, 2003, 100: 15486
CrossRef ADS Google scholar
[22]
H. Neuweiler, C. M. Johnson, and A. R. Fersht, Proc. Natl. Acad. Sci. USA, 2009, 106(44): 18569
CrossRef ADS Google scholar
[23]
M. M. Garcia-Mira, M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz, Science, 2002, 298: 2191
CrossRef ADS Google scholar
[24]
M. L. Scalley and D. Baker, Proc. Natl. Acad. Sci. USA, 1997, 94: 10636
CrossRef ADS Google scholar
[25]
W. Y. Yang and M. Gruebele, Biochemistry, 2004, 43: 13018
CrossRef ADS Google scholar
[26]
K. Ghosh, B. Ozkan, and K. A. Dill, J. Am. Chem. Soc., 2007, 129: 11920
CrossRef ADS Google scholar
[27]
D. Baker, Nature, 2000, 405: 39
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/