Protein folding as a quantum transition between conformational states

Liao-fu LUO (罗辽复)

Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 133 -140.

PDF (231KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 133 -140. DOI: 10.1007/s11467-010-0153-0
RESEARCH ARTICLE

Protein folding as a quantum transition between conformational states

Author information +
History +
PDF (231KB)

Abstract

Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states.

Keywords

protein folding rate / quantum transition / torsion states / non-Arrhenius temperature dependence / exergonic and endergonic folding / ultrafast folding

Cite this article

Download citation ▾
Liao-fu LUO (罗辽复). Protein folding as a quantum transition between conformational states. Front. Phys., 2011, 6(1): 133-140 DOI:10.1007/s11467-010-0153-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. F. Luo, Int. J. Quant. Chem., 1987, 32: 435

[2]

D. Shepelyansky, Symposium Anderson Localization in Nonlinear and Many-Body Systems, Dresden, 2009

[3]

J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins, 1995, 21: 167

[4]

K. Huang and A. Rhys, Proc. Roy. Soc. (London), 1950, A204: 406

[5]

D. Devault, Quart. Rev., Biophysics, 1980, 13: 387

[6]

J. Jortner, J. Chem. Phys., 1976, 64: 4860

[7]

M. Abramowitz and I. A. Stegun, Handbook of Mathemat-ical Functions, 10th printing with corrections, National Bureau of Standards, Applied Mathematics Series55, 1972

[8]

G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Series: Cambridge Mathematical Library, 1995

[9]

L. F. Luo, Int. J. Quant. Chem., 1995, 54: 243

[10]

L. F. Luo, Theoretic-Physical Approach to Molecular Biology, Shanghai: Shanghai Scientific & Technical Publishers, 2004: 437, 457

[11]

L. F. Luo, arXiv: qbio/0906.2452, 2009

[12]

L. F. Luo, arXiv: qbio/1008.0237, 2010

[13]

T. Kakitani and H. Kakitani, Biochim. et Biophys. Acta, 1981, 635: 498

[14]

Y. Zhang and L. F. Luo, Scientia Sinica Vitae, 2010, 40: 887,

[15]

K. W Plaxco, T. Simons, and D. Baker, J. Mol. Biol., 1998, 277(4): 985

[16]

D. N. Ivankov and A. V. Finkelstein, Proc. Natl. Acad. Sci. USA, 2004, 101: 8942

[17]

K. Kamagata, M. Arai, and K. Kuwajima, J. Mol. Biol., 2004, 339: 951

[18]

K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallée-Bélisle, E. R. Main, F. BemporadL. Qiu, K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W. Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W. Plaxco, Protein Sci., 2005, 14(3): 602

[19]

M. Jacob, T. Schindler, J. Balbach, and F. X. Schmid, Proc. Natl. Acad. Sci. USA, 1997, 94 (11): 5622

[20]

L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc., 2002, 124(44): 12952

[21]

Y. Zhu, D. O. V. Alonso, K. Maki, C. Y. Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA, 2003, 100: 15486

[22]

H. Neuweiler, C. M. Johnson, and A. R. Fersht, Proc. Natl. Acad. Sci. USA, 2009, 106(44): 18569

[23]

M. M. Garcia-Mira, M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz, Science, 2002, 298: 2191

[24]

M. L. Scalley and D. Baker, Proc. Natl. Acad. Sci. USA, 1997, 94: 10636

[25]

W. Y. Yang and M. Gruebele, Biochemistry, 2004, 43: 13018

[26]

K. Ghosh, B. Ozkan, and K. A. Dill, J. Am. Chem. Soc., 2007, 129: 11920

[27]

D. Baker, Nature, 2000, 405: 39

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (231KB)

987

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/