Remote acoustic cloaks

, ,

PDF(357 KB)
PDF(357 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 65-69. DOI: 10.1007/s11467-010-0147-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Remote acoustic cloaks

Author information +
History +

Abstract

Due to the correspondence of the acoustic equations to Maxwell’s equations of one polarization in two dimensions, we exploit theoretically the acoustic counterpart of the recently proposed remote invisibility cloak. The cloak consists of a circular cylindrical core with designed bulk moduli, and an “anti-object” embedded inside a shell with anisotropic mass densities. The material parameters of the cloaking shells are obtained by using the coordinate transformation method. The essence of the new design of cloaks relies on the ability that the cloaked object is no longer deafened by the cloaking shell, which is verified by both the far-field and near-field full-wave finite-element imulations in two dimensions.

Keywords

cloak / acoustics / finite-element simulations

Cite this article

Download citation ▾
, , . Remote acoustic cloaks. Front. Phys., 2011, 6(1): 65‒69 https://doi.org/10.1007/s11467-010-0147-y

References

[1]
J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780
CrossRef ADS Google scholar
[2]
U. Leonhardt, Science, 2006, 312: 1777
CrossRef ADS Google scholar
[3]
K. Yao, C. Li, and F. Li, Chin. Phys. Lett., 2008, 25: 1657
CrossRef ADS Google scholar
[4]
Y. Lai, J. Ng, H. Chen, Z. Zhang, and C. T. Chan, Front. Phys. China, 2010, 5(3): 308
CrossRef ADS Google scholar
[5]
H. Chen, C. T. Chan, and P. Sheng, Nature Mater., 2010, 9: 387
CrossRef ADS Google scholar
[6]
D. Bao, E. Kallos, W. Tang, C. Argyropoulos, Y. Hao, and T. Cui, Front. Phys. China, 2010, 5(3): 319
CrossRef ADS Google scholar
[7]
S. A. Cummer and D. Schurig, New J. Phys., 2007, 9: 45
CrossRef ADS Google scholar
[8]
H. Chen and C. T. Chan, Appl. Phys. Lett., 2007, 91: 183518
CrossRef ADS Google scholar
[9]
S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. B. Pendry, M. Rahm, and A. Starr, Phys. Rev. Lett., 2008, 100: 024301
CrossRef ADS Google scholar
[10]
H. Chen, T. Yang, X. Luo, and H. Ma, Chin. Phys. Lett., 2008, 25: 3696
CrossRef ADS Google scholar
[11]
Y. Cheng and X. J. Liu, Chin. Phys. Lett., 2009, 26: 014301
CrossRef ADS Google scholar
[12]
Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, Appl. Phys. Lett., 2008, 92: 151913
CrossRef ADS Google scholar
[13]
Y. Cheng and X. J. Liu, Appl. Phys. Lett., 2008, 93: 071903
CrossRef ADS Google scholar
[14]
Y. Cheng and X. J. Liu, J. Appl. Phys., 2008, 104: 104911
CrossRef ADS Google scholar
[15]
B. Liu and J. P. Huang, Eur. Phys. J. Appl. Phys., 2009, 48: 20501
CrossRef ADS Google scholar
[16]
C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett., 2008, 92: 251907
CrossRef ADS Google scholar
[17]
Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett., 2009, 102: 093901
CrossRef ADS Google scholar
[18]
A. Cho, Science, 2009, 323: 701
CrossRef ADS Google scholar
[19]
T. Philbin, Physics, 2009, 2: 17
CrossRef ADS Google scholar
[20]
T. Yang, H. Chen, X. Luo, and H. Ma, Opt. Express, 2008, 16: 18545
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(357 KB)

Accesses

Citations

Detail

Sections
Recommended

/