Different kinds of discrete breathers in a Sine–Gordon lattice

, ,

PDF(369 KB)
PDF(369 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (2) : 199-204. DOI: 10.1007/s11467-010-0019-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Different kinds of discrete breathers in a Sine–Gordon lattice

Author information +
History +

Abstract

We study a one-dimensional Sine–Gordon lattice of anharmonic oscillators with cubic and quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the one-dimensional Sine–Gordon lattice no matter whether the nonlinear interaction is cubic or quartic. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.

Keywords

discrete breathers / quasiperiodic discrete breathers / chaotic discrete breathers / Sine–Gordon lattice

Cite this article

Download citation ▾
, , . Different kinds of discrete breathers in a Sine–Gordon lattice. Front Phys Chin, 2010, 5(2): 199‒204 https://doi.org/10.1007/s11467-010-0019-5

References

[1]
S. Aubry, Physica D, 1997, 103: 201
CrossRef ADS Google scholar
[2]
S. Flach, C. R. Willis, Phys. Rep., 1998, 295: 181
CrossRef ADS Google scholar
[3]
S. Aubry, Physica D, 2006, 216: 1
CrossRef ADS Google scholar
[4]
S. Flach, Computational Studies of Discrete Breathers, in: Energy Localization and Transfer, edited by T. Dauxois, A. Litvak-Hinenzon, R. MacKay, and A. Spanoudaki, Singapore: World Scientific, 2004: 1-71
[5]
S. Flach and A. Gorbach, Phys. Rep., 2008, 467: 1
CrossRef ADS Google scholar
[6]
Q. Zhou, B. B. LÜ, and Q. Tian, Acta. Phys. Sin., 2009, 58(1): 0411 (in Chinese)
[7]
B. B. LÜ and Q. Tian, Front. Phys. China, 2009, 4(4): 497
CrossRef ADS Google scholar
[8]
B. B. LÜ, Q. Zhou, and Q. Tian, Journal of Beijing Normal University (Natural Science), 2008, 44(5): 476 (in Chinese)
[9]
B. B. LÜ and Q. Tian, Journal of Beijing Normal University (Natural Science), 2008, 44(6): 581 (in Chinese)
[10]
B. B. LÜ and Q. Tian, Chin. Phys., 2009, 18 (in press)
[11]
B. B. LÜ and Q. Tian, Chin. Phys., 2009 (in press)
[12]
M. Johansson and S. Aubry, Nonlinearity, 1997, 10:11571
CrossRef ADS Google scholar
[13]
P. G. Kevrekidis and M. I. Weinstein, Mathematics and Computers in Simulation, 2003, 62: 65
CrossRef ADS Google scholar
[14]
G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E, 2006, 74: 036608
CrossRef ADS Google scholar
[15]
V. M. Burlakov, S. A. Kiselev, and V. I. Rupasov, Phys. Lett. A, 1990, 147: 130
CrossRef ADS Google scholar
[16]
K. Ikeda, Y. Doi, F. F. Bao, and T. Kawahara, Physica D, 2007, 225(2): 184
CrossRef ADS Google scholar
[17]
P. J. Martinez, M. Meister, L. M. Floria, and F. Falo, Chaos, 2003, 13: 610
CrossRef ADS Google scholar
[18]
P. Mainadis and T. Bountis, Phys. Rev. E, 2006, 73: 046211
CrossRef ADS Google scholar
[19]
Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, Phys. Rev. Lett., 2005, 95: 203903
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(369 KB)

Accesses

Citations

Detail

Sections
Recommended

/