Molecule production via Feshbach resonance in bosonic systems

Jie LIU (刘杰), Bin LIU (刘斌)

PDF(272 KB)
PDF(272 KB)
Front. Phys. ›› 2010, Vol. 5 ›› Issue (2) : 123-130. DOI: 10.1007/s11467-010-0018-6
MINI-REVIEW ARTICLE
MINI-REVIEW ARTICLE

Molecule production via Feshbach resonance in bosonic systems

Author information +
History +

Abstract

In this article, we review our recent theoretical works on producing ultracold molecules from ultracold bosonic atoms via magnetically tunable Feshbach resonances. Our analysis relies on a two-channel quantum microscopic model that accounts for many-body effects in the association process. We show that the picture of two-body molecular production depicted by the Landau–Zener model is signifi-cantly altered due to many-body effects. We derive an analytic expression for molecular conversion efficiency for the nonadiabatic linearly swept Feshbach resonance, that explains the discrepancy between the prediction of the Landau–Zener formula and the experimental data. With including the thermal dephasing effects in the oscillating magnetic field modulation Feshbach resoance, we reproduce the Lorentzian resonance lineshape and explain the maximum conversion efficiency observed in experiment.

Keywords

Feshbach resonance / molecule production / bosonic system

Cite this article

Download citation ▾
Jie LIU (刘杰), Bin LIU (刘斌). Molecule production via Feshbach resonance in bosonic systems. Front Phys Chin, 2010, 5(2): 123‒130 https://doi.org/10.1007/s11467-010-0018-6

References

[1]
M. Greiner, C. A. Regal, and D. S. Jin, Nature (London), 2003, 426: 537
CrossRef ADS Google scholar
[2]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett., 2003, 91: 250401
CrossRef ADS Google scholar
[3]
S. Jochim, M.Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, Science, 2003, 302: 2101
CrossRef ADS Google scholar
[4]
M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett., 2004, 92: 120401
CrossRef ADS Google scholar
[5]
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Nature (London), 2002, 417: 529
CrossRef ADS Google scholar
[6]
M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Phys. Rev. Lett., 2001, 87: 120406
CrossRef ADS Google scholar
[7]
E. Timmermans, K. Furuya, P. W. Milloni, and A. K. Kerman, Phys. Lett. A, 2001, 285: 228
CrossRef ADS Google scholar
[8]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev. Lett., 2004, 92: 120403
CrossRef ADS Google scholar
[9]
M. Greiner, C. A. Regal, and D. S. Jin, Phys. Rev. Lett., 2005, 94: 070403
CrossRef ADS Google scholar
[10]
L. D. Landau, Phys. Z. Sowjetunion, 1932, 2: 46
[11]
G. Zener, Proc. R. Soc. London, Ser. A, 1932, 137: 696
CrossRef ADS Google scholar
[12]
S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev. Lett., 2005, 95: 190404
CrossRef ADS Google scholar
[13]
T. Köhler and K. Góral, Rev. Mod. Phys., 2006, 78: 1311
CrossRef ADS Google scholar
[14]
K. Góral, T. Köhler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne, J. Phys. B, 2004, 37: 3457
[15]
J. Liu, L. B. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and Q. Niu, Phys. Rev. A, 2002, 66: 023404
CrossRef ADS Google scholar
[16]
J. Liu, B. Wu, and Q. Niu, Phys. Rev. Lett., 2003, 90: 170404
CrossRef ADS Google scholar
[17]
A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev. A, 2001, 64: 063611
CrossRef ADS Google scholar
[18]
J. R. Anglin, Phys. Rev. A, 2003, 67: 051601
CrossRef ADS Google scholar
[19]
J. Liu, C. W. Zhang, M. G. Raizen, and Q. Niu, Phys. Rev. A, 2006, 73: 013601
CrossRef ADS Google scholar
[20]
G. F. Wang, D. F. Ye, L. B. Fu, X. Z. Chen, and J. Liu, Phys. Rev. A, 2006, 74: 033414
CrossRef ADS Google scholar
[21]
E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C. Wilson, D. S. Jin, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett., 2005, 94: 120402
CrossRef ADS Google scholar
[22]
S. Shapiro, Phys. Rev. Lett., 1963, 11: 80
CrossRef ADS Google scholar
[23]
See, for example, E. Eisenberg, K. Held, and B. L. Altshuler, Phys. Rev. Lett., 2002, 88: 136801
CrossRef ADS Google scholar
[24]
J. R. Anglin and A. Vardi, Phys. Rev. A, 2001, 64: 013605
CrossRef ADS Google scholar
[25]
R. A. Duine and H. T. C. Stoof, New J. Phys., 2003, 5: 69
CrossRef ADS Google scholar
[26]
G. F. Gribakin and V. V. Flambaum, Phys. Rev. A, 1993, 48: 546
CrossRef ADS Google scholar
[27]
N. R. Claussen, S. J. J. M. F. Kokkelmans, S. T. Thompson, E. A. Donley, E. Hodby, and C. E.Wieman, Phys. Rev. A, 2003, 67: 060701(R)
CrossRef ADS Google scholar
[28]
J. E. Williams, N. Nygaard, and C.W. Clark, New J. Phys., 2006, 8: 150
CrossRef ADS Google scholar
[29]
A. Sinatra and Y. Castin, Phys. Rev. A, 2008, 78: 053615
CrossRef ADS Google scholar
[30]
A. Sinatra, Y. Castin, and E. Witkowska, Phys. Rev. A, 2009, 80: 033614
CrossRef ADS Google scholar
[31]
A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. A, 2006, 73: 043617
CrossRef ADS Google scholar
[32]
J. Liu, B. Liu, and L. B. Fu, Phys. Rev. A, 2008, 78: 013618
CrossRef ADS Google scholar
[33]
B. Liu, L. B. Fu, and J. Liu, Phys. Rev. A, 2010, 81: 013602
CrossRef ADS Google scholar
[34]
J. Liu, L. B. Fu, B. Liu, and B. Wu, New J. Phys., 2008, 10: 123018
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(272 KB)

Accesses

Citations

Detail

Sections
Recommended

/