Thermal transport associated with ballistic phonons in asymmetric quantum structures

, ,

PDF(450 KB)
PDF(450 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 420-425. DOI: 10.1007/s11467-009-0056-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermal transport associated with ballistic phonons in asymmetric quantum structures

  • 1,2
  • 2
  • 2
Author information +
History +

Abstract

Using the scattering matrix method, we investigate the thermal conductance associated with ballistic phonons at low temperatures in asymmetric quantum structures. The results show that when the structure is an ideal quantum wire, the universal value π2kB2/(3h) can be observed at very low temperatures. However, for asymmetric quantum structure, the thermal conductance is less than the universal value π2kB2/(3h), even at T → 0. The results also show that the thermal conductance is strongly dependent on the transport direction. The rectification effect can be observed in the asymmetric structure and can be adjusted by changing the structural parameters. A brief analysis of these results is given.

Keywords

phonon in nanoscale structure / ballistic transport / thermal conductance

Cite this article

Download citation ▾
, , . Thermal transport associated with ballistic phonons in asymmetric quantum structures. Front. Phys., 2009, 4(3): 420‒425 https://doi.org/10.1007/s11467-009-0056-0

References

[1]
G. Chen, Phys. Rev. B, 1998, 57: 14958
CrossRef ADS Google scholar
[2]
W. E. Bies, R. J. Radtke, and H. Ehrenreich, J. Appl. Phys., 2000, 88: 1498
CrossRef ADS Google scholar
[3]
M. V. Simkin and G. D. Mahan, Phys. Rev. Lett., 2000, 84: 927
CrossRef ADS Google scholar
[4]
D. Song and G. Chen, Appl. Phys. Lett., 2004, 84: 687
CrossRef ADS Google scholar
[5]
D. Z. A. Chen, A. Narayanaswamy, and G. Chen, Phys. Rev. B, 2005, 72: 155435
CrossRef ADS Google scholar
[6]
B. W. Li, L. Wang, and B. B. Hu, Phys. Rev. Lett., 2002, 88: 223901
CrossRef ADS Google scholar
[7]
B. W. Li, G. Casati, J. Wang, and T. Prosen, Phys. Rev. Lett., 2004, 92: 254301
CrossRef ADS Google scholar
[8]
J. S. Wang, Phys. Rev. Lett., 2007, 99: 160601
CrossRef ADS Google scholar
[9]
J. S. Wang, N. Zen, J. Wang, and C. K. Gan, Phys. Rev. B, 2007, 75: 061128
[10]
B. A. Glavin, Phys. Rev. Lett., 2001, 86: 4318
CrossRef ADS Google scholar
[11]
J. Zou and A. Balandin, J. Appl. Phys., 2001, 89: 2932
CrossRef ADS Google scholar
[12]
W. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, Phys. Rev. B, 2002, 66: 045302
CrossRef ADS Google scholar
[13]
D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Appl. Phys. Lett., 2003, 83: 2934
CrossRef ADS Google scholar
[14]
R. G. Yang, G. Chen, and M. S. Dresselhaus, Phys. Rev B, 2005, 72: 125418
CrossRef ADS Google scholar
[15]
O. Chiatti, J. T. Nicholls, Y. Y. Proskuryakov, N. Lumpkin, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett., 2006, 97: 056601
CrossRef ADS Google scholar
[16]
J. Wang and J. S. Wang, Appl. Phys. Lett., 2007, 90: 241908
CrossRef ADS Google scholar
[17]
C. Guthy, C. Y. Nam, and J. E. Fischer, J. Appl. Phys., 2008, 103: 064319
CrossRef ADS Google scholar
[18]
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 2001, 87: 215502
CrossRef ADS Google scholar
[19]
N. Mingo and D. A. Broido, Phys. Rev. Lett., 2005, 95: 096105
CrossRef ADS Google scholar
[20]
N. Mingo and D. A. Broido, Nano Lett., 2005, 5: 1221
CrossRef ADS Google scholar
[21]
H. Y. Chiu, V. V. Deshpande, H. W. Ch. Postma, C. N. Lau, C. Miko, L. Forro, and M. Bockrath, Phys. Rev. Lett., 2005, 95: 226101
CrossRef ADS Google scholar
[22]
J. S. Wang, J. Wang, and N. Zeng, Phys. Rev. B, 2006, 74: 033408
CrossRef ADS Google scholar
[23]
J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Phys. Rev.E, 2007, 75: 061128
CrossRef ADS Google scholar
[24]
T. Yamamoto, Y. Nakazawa, and K. Watanabe, New J. Phys., 2007, 9: 245
CrossRef ADS Google scholar
[25]
G. Wu and B. W. Li, Phys. Rev. B, 2007, 76: 85424
CrossRef ADS Google scholar
[26]
W. Zhang, N. Mingo, and T. S. Fisher, Phys. Rev. B, 2007, 76: 195429
CrossRef ADS Google scholar
[27]
Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, and C. Z. Gu, Appl. Phys. Lett., 2007, 91: 123119
CrossRef ADS Google scholar
[28]
N. MingoD. A. Stewart, D. A. Broido, and D. Srivastava, Phys. Rev. B, 2008, 77: 033418
[29]
K. Satio, J. Nakamura, and A. Natori, Phys. Rev. B, 2007, 76: 115409
CrossRef ADS Google scholar
[30]
M. Morooka, T. Yamamoto, and K. Watanabe, Phys. Rev. B, 2008, 77: 033412
CrossRef ADS Google scholar
[31]
J. Zimmermann, P. Pavone, and G. Cuniberti, Phys. Rev. B, 2008, 78: 045410
CrossRef ADS Google scholar
[32]
Q. F. Sun, P. Yang, and H. Guo, Phys. Rev. Lett., 2002, 89: 175901
CrossRef ADS Google scholar
[33]
W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, Appl. Phys. Lett., 2004, 85: 822
CrossRef ADS Google scholar
[34]
F. Xie, K. Q. Chen, Y. G. Wang, Q. Wan, B. S. Zou, and Y. Zhang, J. Appl. Phys., 2008, 104: 054312
CrossRef ADS Google scholar
[35]
L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett., 1998, 81: 232
CrossRef ADS Google scholar
[36]
M. P. Blencowe, Phys. Rev. B, 1999, 59: 4992
CrossRef ADS Google scholar
[37]
K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature (London), 2000, 404: 974
CrossRef ADS Google scholar
[38]
M. C. Cross and R. Lifshitz, Phys. Rev. B, 2001, 64: 85324
CrossRef ADS Google scholar
[39]
W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, J. Phys. D: Appl. Phys., 2003, 36: 3027
[40]
C. M. Chang and M. R. Geller, Phys. Rev. B, 2005, 71: 125304
CrossRef ADS Google scholar
[41]
D. H. Santamore and M. C. Cross, Phys. Rev. Lett., 2001, 87: 115502
CrossRef ADS Google scholar
[42]
D. H. Santamore and M. C. Cross, Phys. Rev. B, 2001, 63: 184306
CrossRef ADS Google scholar
[43]
K. Q. Chen, W. X. Li, W. H. Duan, Z. Shuai, and B. L.Gu, Phys. Rev. B, 2005, 72: 045422
CrossRef ADS Google scholar
[44]
W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, J. Phys.: Condens. Matter, 2004, 16: 5049
CrossRef ADS Google scholar
[45]
W. Q. Huang, K. Q. Chen, Z. Shuai, L. L. Wang, W. Y. Hu, and B. S. Zou, J. Appl. Phys., 2005, 98: 093524
CrossRef ADS Google scholar
[46]
L.M. Tang, L. L. Wang, K. Q. Chen, W. Q. Huang, and B. S. Zou, Appl. Phys. Lett., 2006, 88: 163505
CrossRef ADS Google scholar
[47]
P. Yang, Q. F. Sun, H. Guo, and B. B. Hu, Phys. Rev. B, 2007, 75: 235319
CrossRef ADS Google scholar
[48]
X. F. Peng, K. Q. Chen, B. S. Zou, and Y. Zhang, Appl. Phys. Lett., 2007, 90: 193502
CrossRef ADS Google scholar
[49]
F. Xie, K. Q. Chen, Y. G. Wang, and Y. Zhang, J. Appl. Phys., 2008, 103: 084501
CrossRef ADS Google scholar
[50]
B. W. Li, L. Wang, and G. Casati, Phys. Rev. Lett., 2004, 93: 184301
CrossRef ADS Google scholar
[51]
B. B. Hu, L. Yang, and Y. Zhang, Phys. Rev. Lett., 2006, 97: 124302
CrossRef ADS Google scholar
[52]
J. P. Eckmann and C. Mejia-Monasterio, Phys. Rev. Lett., 2006, 97: 094301
CrossRef ADS Google scholar
[53]
Y. Ming, Z. X. Wang, Q. Li, and Z. J. Ding, Appl. Phys. Lett., 2007, 91: 143508
CrossRef ADS Google scholar
[54]
C. W. Chang, D. Okawa, A.Majumdar, and A. Zettl, Science, 2006, 314: 1121
CrossRef ADS Google scholar
[55]
K. Graff, Wave Motion in Elastic Solids, New York: Dover, 1991
[56]
Y. Tanaka, F. Yoshida, and S. Tamura, Phys. Rev. B, 2005, 71: 205308
CrossRef ADS Google scholar
[57]
J. S. Wang, J. Wang, and J. T. Lu, Eur. Phys. J. B, 2008, 62: 381
CrossRef ADS Google scholar
[58]
H. Q. Xu, Phys. Rev. B, 1995, 52: 5803
CrossRef ADS Google scholar
[59]
H. Q. Xu, Appl. Phys. Lett., 2002, 80: 853
CrossRef ADS Google scholar
[60]
O. Madelung, Semiconductors: Group IV Elements and IIIV Compounds, Berlin: Springer, 1982

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(450 KB)

Accesses

Citations

Detail

Sections
Recommended

/