Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study
, , , ,
Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study
The fluorination and hydrogenation reactions on (6, 6) and (10, 0) single-walled carbon nanotubes (SWCNTs) have been examined via computing the reaction energy for the chemisorption. The examined nanotubes have comparable lengths and diameters, with or without Stone–Wales defects on the sidewall. The two fluorine or hydrogen atoms are anchored to the external walls of the SWCNTs. The computed chemisorption energies of these virtual reactions reveal that the fluorination and hydrogenation of the nanotubes are moderately sensitive to the nanotube chirality and the sidewall topology, and the (10, 0) SWCNT with Stone–Wales defect can be easily fluorinated and hydrogenated.
carbon nanotube / first-principle calculation / fluorination / hydrogenation / Stone–Wales defect
[1] |
S. Iijima, Nature, 1991, 354: 56
CrossRef
ADS
Google scholar
|
[2] |
A. Hirsch and O. Vostrowsky, Top. Curr. Chem., 2005, 245: 193
|
[3] |
M. J. O’Connell, P. Boul, L. M. Ericson, C. B. Huffman, Y. H.Wang, E. Haroz, C. Kuper, J. M. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 2001, 342: 265
CrossRef
ADS
Google scholar
|
[4] |
C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 2002, 35: 8825
CrossRef
ADS
Google scholar
|
[5] |
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204
CrossRef
ADS
Google scholar
|
[6] |
E. Joselevich, ChemPhysChem, 2004, 5: 619
CrossRef
ADS
Google scholar
|
[7] |
K. Balasubramanian and M. Burghard, Small, 2005, 1: 180
CrossRef
ADS
Google scholar
|
[8] |
S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 2005, 17: 17
CrossRef
ADS
Google scholar
|
[9] |
S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 2002, 35: 1105
CrossRef
ADS
Google scholar
|
[10] |
X. Lu and Z. F. Chen, Chem. Rev., 2005, 105: 3643
CrossRef
ADS
Google scholar
|
[11] |
P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett., 1999, 310: 367
CrossRef
ADS
Google scholar
|
[12] |
M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen, Angew. Chem. Int. Ed., 2001, 40: 4002
CrossRef
ADS
Google scholar
|
[13] |
K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 2003, 301: 1501
CrossRef
ADS
Google scholar
|
[14] |
H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C. Haddon, J. Am. Chem. Soc., 2003, 125: 14893
CrossRef
ADS
Google scholar
|
[15] |
Z. F. Chen, S. Nagase, A. Hirsch, R. C. Haddon, W. Thiel, and P. von R. Schleyer, Angew. Chem. Int. Ed., 2004, 43: 1552
CrossRef
ADS
Google scholar
|
[16] |
Y. Y. Chu and M. D. Su, Chem. Phys. Lett., 2004, 394: 231
CrossRef
ADS
Google scholar
|
[17] |
H. Pan, Y. P. Feng, and J. Y. Lin, Phys. Rev. B, 2004, 70: 245425
CrossRef
ADS
Google scholar
|
[18] |
J. J. Zhao, H. Park, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227
CrossRef
ADS
Google scholar
|
[19] |
H. Park, J. J. Zhao, and J. P. Lu, Nanotechnology, 2005, 16: 635
CrossRef
ADS
Google scholar
|
[20] |
J. J. Zhao, Z. F. Chen, Z. Zhou, H. Park, P. von R. Schleyer, and J. P. Lu, ChemPhysChem, 2005, 6: 598
CrossRef
ADS
Google scholar
|
[21] |
C. Song, Y. Xia, M. Zhao, X. Liu, F. Li, and B. Huang, Chem. Phys. Lett., 2005, 415: 183
CrossRef
ADS
Google scholar
|
[22] |
E. Cho, H. Kim, C. Kim, and S. Han, Chem. Phys. Lett., 2006, 419: 134
CrossRef
ADS
Google scholar
|
[23] |
J. Lu, D. Wang, S. Nagase, M. Ni, X. W. Zhang, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, Y. S. Zhou, and W. N. Mei, J. Phys. Chem. B, 2006, 110: 5655
CrossRef
ADS
Google scholar
|
[24] |
O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2002, 66: 121401
CrossRef
ADS
Google scholar
|
[25] |
K. S. Kim, D. J. Bae, J. R. Kim, K. A. Park, S. C. Lim, J. J. Kim, W. B. Choi, C. Y. Park, and Y. H. Lee, Adv. Mater., 2002, 14: 1818
CrossRef
ADS
Google scholar
|
[26] |
A. Kuznetsova, J. Yates, J. Liu, and R. Smalley, Chem. Phys. Lett., 2000, 324: 213
CrossRef
ADS
Google scholar
|
[27] |
K. A. Park, Y. S. Choi, Y. H. Lee, and C. W. Kim, Phys. Rev. B, 2003, 68: 045429
CrossRef
ADS
Google scholar
|
[28] |
M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B, 1998, 57: R4277
CrossRef
ADS
Google scholar
|
[29] |
C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, and W. Duan, J. Phys. Chem. B, 2006, 110: 10266
CrossRef
ADS
Google scholar
|
[30] |
B. Zhou, W. Guo, and C. Tang, Nanotechnology, 2008, 19: 075707
CrossRef
ADS
Google scholar
|
[31] |
H. F. Bettinger, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc., 2001, 123: 12849
CrossRef
ADS
Google scholar
|
[32] |
C.W. Bauschlicher Jr., Chem. Phys. Lett., 2000, 322: 237
CrossRef
ADS
Google scholar
|
[33] |
V. L. Gregory, P. E. Christopher, Z. Filippo, D. V. Allesandro, and C. Jean-Christophe, J. Phys. Chem. B, 2005, 109: 6153
CrossRef
ADS
Google scholar
|
[34] |
B. Delley, J. Chem. Phys., 1990, 92: 508; 2000, 113: 7756
|
[35] |
B. Akdim, X. Duan, W. W. Adams, and R. Pachter, Phys. Rev. B, 2003, 67: 245404
CrossRef
ADS
Google scholar
|
[36] |
T. Dimitrios, T. Nikos, B. Alberto, and P. Maurizio, Chem. Rev., 2006, 106: 1105
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |