Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study

Li-mei YU (于丽梅) , Ji-jun ZHAO (赵纪军) , Jie-shan QIU (邱介山) , Ce HAO (郝策) , Hai WANG (王海)

Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 393 -397.

PDF (888KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 393 -397. DOI: 10.1007/s11467-009-0051-5
RESEARCH ARTICLE

Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study

Author information +
History +
PDF (888KB)

Abstract

The fluorination and hydrogenation reactions on (6, 6) and (10, 0) single-walled carbon nanotubes (SWCNTs) have been examined via computing the reaction energy for the chemisorption. The examined nanotubes have comparable lengths and diameters, with or without Stone–Wales defects on the sidewall. The two fluorine or hydrogen atoms are anchored to the external walls of the SWCNTs. The computed chemisorption energies of these virtual reactions reveal that the fluorination and hydrogenation of the nanotubes are moderately sensitive to the nanotube chirality and the sidewall topology, and the (10, 0) SWCNT with Stone–Wales defect can be easily fluorinated and hydrogenated.

Keywords

carbon nanotube / first-principle calculation / fluorination / hydrogenation / Stone–Wales defect

Cite this article

Download citation ▾
Li-mei YU (于丽梅), Ji-jun ZHAO (赵纪军), Jie-shan QIU (邱介山), Ce HAO (郝策), Hai WANG (王海). Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study. Front. Phys., 2009, 4(3): 393-397 DOI:10.1007/s11467-009-0051-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Iijima, Nature, 1991, 354: 56

[2]

A. Hirsch and O. Vostrowsky, Top. Curr. Chem., 2005, 245: 193

[3]

M. J. O’Connell, P. Boul, L. M. Ericson, C. B. Huffman, Y. H.Wang, E. Haroz, C. Kuper, J. M. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 2001, 342: 265

[4]

C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 2002, 35: 8825

[5]

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204

[6]

E. Joselevich, ChemPhysChem, 2004, 5: 619

[7]

K. Balasubramanian and M. Burghard, Small, 2005, 1: 180

[8]

S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 2005, 17: 17

[9]

S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 2002, 35: 1105

[10]

X. Lu and Z. F. Chen, Chem. Rev., 2005, 105: 3643

[11]

P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett., 1999, 310: 367

[12]

M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen, Angew. Chem. Int. Ed., 2001, 40: 4002

[13]

K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 2003, 301: 1501

[14]

H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C. Haddon, J. Am. Chem. Soc., 2003, 125: 14893

[15]

Z. F. Chen, S. Nagase, A. Hirsch, R. C. Haddon, W. Thiel, and P. von R. Schleyer, Angew. Chem. Int. Ed., 2004, 43: 1552

[16]

Y. Y. Chu and M. D. Su, Chem. Phys. Lett., 2004, 394: 231

[17]

H. Pan, Y. P. Feng, and J. Y. Lin, Phys. Rev. B, 2004, 70: 245425

[18]

J. J. Zhao, H. Park, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227

[19]

H. Park, J. J. Zhao, and J. P. Lu, Nanotechnology, 2005, 16: 635

[20]

J. J. Zhao, Z. F. Chen, Z. Zhou, H. Park, P. von R. Schleyer, and J. P. Lu, ChemPhysChem, 2005, 6: 598

[21]

C. Song, Y. Xia, M. Zhao, X. Liu, F. Li, and B. Huang, Chem. Phys. Lett., 2005, 415: 183

[22]

E. Cho, H. Kim, C. Kim, and S. Han, Chem. Phys. Lett., 2006, 419: 134

[23]

J. Lu, D. Wang, S. Nagase, M. Ni, X. W. Zhang, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, Y. S. Zhou, and W. N. Mei, J. Phys. Chem. B, 2006, 110: 5655

[24]

O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2002, 66: 121401

[25]

K. S. Kim, D. J. Bae, J. R. Kim, K. A. Park, S. C. Lim, J. J. Kim, W. B. Choi, C. Y. Park, and Y. H. Lee, Adv. Mater., 2002, 14: 1818

[26]

A. Kuznetsova, J. Yates, J. Liu, and R. Smalley, Chem. Phys. Lett., 2000, 324: 213

[27]

K. A. Park, Y. S. Choi, Y. H. Lee, and C. W. Kim, Phys. Rev. B, 2003, 68: 045429

[28]

M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B, 1998, 57: R4277

[29]

C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, and W. Duan, J. Phys. Chem. B, 2006, 110: 10266

[30]

B. Zhou, W. Guo, and C. Tang, Nanotechnology, 2008, 19: 075707

[31]

H. F. Bettinger, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc., 2001, 123: 12849

[32]

C.W. Bauschlicher Jr., Chem. Phys. Lett., 2000, 322: 237

[33]

V. L. Gregory, P. E. Christopher, Z. Filippo, D. V. Allesandro, and C. Jean-Christophe, J. Phys. Chem. B, 2005, 109: 6153

[34]

B. Delley, J. Chem. Phys., 1990, 92: 508; 2000, 113: 7756

[35]

B. Akdim, X. Duan, W. W. Adams, and R. Pachter, Phys. Rev. B, 2003, 67: 245404

[36]

T. Dimitrios, T. Nikos, B. Alberto, and P. Maurizio, Chem. Rev., 2006, 106: 1105

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (888KB)

1307

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/