Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study

, , , ,

PDF(889 KB)
PDF(889 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 393-397. DOI: 10.1007/s11467-009-0051-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study

  • 1,2
  • 3
  • 1,2,4
  • 2
  • 2
Author information +
History +

Abstract

The fluorination and hydrogenation reactions on (6, 6) and (10, 0) single-walled carbon nanotubes (SWCNTs) have been examined via computing the reaction energy for the chemisorption. The examined nanotubes have comparable lengths and diameters, with or without Stone–Wales defects on the sidewall. The two fluorine or hydrogen atoms are anchored to the external walls of the SWCNTs. The computed chemisorption energies of these virtual reactions reveal that the fluorination and hydrogenation of the nanotubes are moderately sensitive to the nanotube chirality and the sidewall topology, and the (10, 0) SWCNT with Stone–Wales defect can be easily fluorinated and hydrogenated.

Keywords

carbon nanotube / first-principle calculation / fluorination / hydrogenation / Stone–Wales defect

Cite this article

Download citation ▾
, , , , . Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study. Front. Phys., 2009, 4(3): 393‒397 https://doi.org/10.1007/s11467-009-0051-5

References

[1]
S. Iijima, Nature, 1991, 354: 56
CrossRef ADS Google scholar
[2]
A. Hirsch and O. Vostrowsky, Top. Curr. Chem., 2005, 245: 193
[3]
M. J. O’Connell, P. Boul, L. M. Ericson, C. B. Huffman, Y. H.Wang, E. Haroz, C. Kuper, J. M. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 2001, 342: 265
CrossRef ADS Google scholar
[4]
C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 2002, 35: 8825
CrossRef ADS Google scholar
[5]
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204
CrossRef ADS Google scholar
[6]
E. Joselevich, ChemPhysChem, 2004, 5: 619
CrossRef ADS Google scholar
[7]
K. Balasubramanian and M. Burghard, Small, 2005, 1: 180
CrossRef ADS Google scholar
[8]
S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 2005, 17: 17
CrossRef ADS Google scholar
[9]
S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 2002, 35: 1105
CrossRef ADS Google scholar
[10]
X. Lu and Z. F. Chen, Chem. Rev., 2005, 105: 3643
CrossRef ADS Google scholar
[11]
P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett., 1999, 310: 367
CrossRef ADS Google scholar
[12]
M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen, Angew. Chem. Int. Ed., 2001, 40: 4002
CrossRef ADS Google scholar
[13]
K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 2003, 301: 1501
CrossRef ADS Google scholar
[14]
H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C. Haddon, J. Am. Chem. Soc., 2003, 125: 14893
CrossRef ADS Google scholar
[15]
Z. F. Chen, S. Nagase, A. Hirsch, R. C. Haddon, W. Thiel, and P. von R. Schleyer, Angew. Chem. Int. Ed., 2004, 43: 1552
CrossRef ADS Google scholar
[16]
Y. Y. Chu and M. D. Su, Chem. Phys. Lett., 2004, 394: 231
CrossRef ADS Google scholar
[17]
H. Pan, Y. P. Feng, and J. Y. Lin, Phys. Rev. B, 2004, 70: 245425
CrossRef ADS Google scholar
[18]
J. J. Zhao, H. Park, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227
CrossRef ADS Google scholar
[19]
H. Park, J. J. Zhao, and J. P. Lu, Nanotechnology, 2005, 16: 635
CrossRef ADS Google scholar
[20]
J. J. Zhao, Z. F. Chen, Z. Zhou, H. Park, P. von R. Schleyer, and J. P. Lu, ChemPhysChem, 2005, 6: 598
CrossRef ADS Google scholar
[21]
C. Song, Y. Xia, M. Zhao, X. Liu, F. Li, and B. Huang, Chem. Phys. Lett., 2005, 415: 183
CrossRef ADS Google scholar
[22]
E. Cho, H. Kim, C. Kim, and S. Han, Chem. Phys. Lett., 2006, 419: 134
CrossRef ADS Google scholar
[23]
J. Lu, D. Wang, S. Nagase, M. Ni, X. W. Zhang, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, Y. S. Zhou, and W. N. Mei, J. Phys. Chem. B, 2006, 110: 5655
CrossRef ADS Google scholar
[24]
O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2002, 66: 121401
CrossRef ADS Google scholar
[25]
K. S. Kim, D. J. Bae, J. R. Kim, K. A. Park, S. C. Lim, J. J. Kim, W. B. Choi, C. Y. Park, and Y. H. Lee, Adv. Mater., 2002, 14: 1818
CrossRef ADS Google scholar
[26]
A. Kuznetsova, J. Yates, J. Liu, and R. Smalley, Chem. Phys. Lett., 2000, 324: 213
CrossRef ADS Google scholar
[27]
K. A. Park, Y. S. Choi, Y. H. Lee, and C. W. Kim, Phys. Rev. B, 2003, 68: 045429
CrossRef ADS Google scholar
[28]
M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B, 1998, 57: R4277
CrossRef ADS Google scholar
[29]
C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, and W. Duan, J. Phys. Chem. B, 2006, 110: 10266
CrossRef ADS Google scholar
[30]
B. Zhou, W. Guo, and C. Tang, Nanotechnology, 2008, 19: 075707
CrossRef ADS Google scholar
[31]
H. F. Bettinger, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc., 2001, 123: 12849
CrossRef ADS Google scholar
[32]
C.W. Bauschlicher Jr., Chem. Phys. Lett., 2000, 322: 237
CrossRef ADS Google scholar
[33]
V. L. Gregory, P. E. Christopher, Z. Filippo, D. V. Allesandro, and C. Jean-Christophe, J. Phys. Chem. B, 2005, 109: 6153
CrossRef ADS Google scholar
[34]
B. Delley, J. Chem. Phys., 1990, 92: 508; 2000, 113: 7756
[35]
B. Akdim, X. Duan, W. W. Adams, and R. Pachter, Phys. Rev. B, 2003, 67: 245404
CrossRef ADS Google scholar
[36]
T. Dimitrios, T. Nikos, B. Alberto, and P. Maurizio, Chem. Rev., 2006, 106: 1105
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(889 KB)

Accesses

Citations

Detail

Sections
Recommended

/