Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review
, , ,
Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review
In this review, we present our recent first principles studies on the sequential H2 dissociative chemisorption and H desorption on the Ptn and Pdn clusters (n=2-9, 13). Upon full saturation by H atoms, the calculated H2 dissociative chemisorption energy and H desorption energy on Pt13 and Pd13 clusters are similar to the corresponding values on smaller close-packed clusters. Indeed, the catalytic performances of these subnano clusters do not vary significantly with the particle sizes or shapes. Instead, they are dependent on the surface metal atoms which can be accessed by H atoms. In addition to the coverage dependency of the H2dissociative chemisorption and H sequential desorption energies, the phase transition of both Pt13 and Pd13from the icosahedral to fcc-like structures at certain H coverage was also investigated.
hydrogen adsorption / density functional theory / metal clusters / catalysis
[1] |
B. C. H. Steele, Nature (London), 1999, 400: 619
CrossRef
ADS
Google scholar
|
[2] |
S. F. Parker, C. D. Frost, M. Telling, P. Albers, M. Lopez, and K. Seitz, Catal. Today, 2006, 114: 418
CrossRef
ADS
Google scholar
|
[3] |
P. S. Cremer, X. Su, Y. R. Shen, and G. A. Somorjai, J. Am. Chem. Soc., 1996, 118: 2942
CrossRef
ADS
Google scholar
|
[4] |
Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128: 726
CrossRef
ADS
Google scholar
|
[5] |
Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128: 8136
CrossRef
ADS
Google scholar
|
[6] |
T. E. Felter, S. M. Foiles, M. S. Daw, and R. H. Stulen, Surf. Sci. Lett., 1986, 171: 379
|
[7] |
S. Horch, H. T. Lorensen, S. Helveg, E. Lægsgaard, I. Stensgaard, W. Jacobsen, J. K. Nøskov, and F. Besenbacher, Nature (London), 1999, 398: 134
CrossRef
ADS
Google scholar
|
[8] |
S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedurftig, and G. Ertl, Phys. Rev. Lett., 2002, 88: 136101
CrossRef
ADS
Google scholar
|
[9] |
P. Légaré, Surf. Sci., 2004, 559: 169
CrossRef
ADS
Google scholar
|
[10] |
M. K. Oudenhuijzen, J. A. Bokhoven, J. T. Miller, D. E. Ramaker, and D. C. Koningsberger, J. Am. Chem. Soc., 2005, 127: 1530
CrossRef
ADS
Google scholar
|
[11] |
X. Liu, H. Dilger,
CrossRef
ADS
Google scholar
|
[12] |
G. Papoian, J. K. Nøskov, and R. Hoffmann, J. Am. Chem. Soc., 2000, 122: 4129
CrossRef
ADS
Google scholar
|
[13] |
D. Godbey and G. A. Somorjai, Surf. Sci., 1988, 204: 301
CrossRef
ADS
Google scholar
|
[14] |
K. Christmann, Surf. Sci. Rep., 1988, 9: 1
CrossRef
ADS
Google scholar
|
[15] |
B. Hammer and J. K. Nøskov, Nature (London), 1995, 376: 238
CrossRef
ADS
Google scholar
|
[16] |
R. A. Olsen, G. J. Kroes, and E. J. Baerends, J. Chem. Phys., 1999, 111: 11155
CrossRef
ADS
Google scholar
|
[17] |
G. W. Watson, R. P. K. Wells, D. J. Willock, and G. J. Hutchings, J. Phys. Chem. B, 2001, 105: 4889
CrossRef
ADS
Google scholar
|
[18] |
K. Nobuhara, H. Kasai, W. Q. Dino, and H. Nakanishi, Surf. Sci., 2004, 566-568: 703
CrossRef
ADS
Google scholar
|
[19] |
K. Nobuhara, H. Kasai, H. Nakanishi, and A. Okiji, J. Appl. Phys., 2002, 92: 5704
CrossRef
ADS
Google scholar
|
[20] |
L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin, and J. Fierro, J. Chem. Phys., 2006, 125: 164715
CrossRef
ADS
Google scholar
|
[21] |
Z. P. Liu and P. Hu, J. Am. Chem. Soc., 2003, 125: 1958
CrossRef
ADS
Google scholar
|
[22] |
X. Q. Gong, A. Selloni, O. Dulub, P. Jacobson, and U. Diebold, J. Am. Chem. Soc., 2008, 130: 370
CrossRef
ADS
Google scholar
|
[23] |
X. Liu, H. Dilger, R. A. Eichel, J. Kunstmann, and E. Roduner, J. Phys. Chem. B, 2006, 110: 2013
CrossRef
ADS
Google scholar
|
[24] |
Y. Okamoto, Chem. Phys. Lett., 2006, 429: 209
CrossRef
ADS
Google scholar
|
[25] |
Y. Okamoto, Chem. Phys. Lett., 2005, 405: 79
CrossRef
ADS
Google scholar
|
[26] |
G. E. Gdowski, J. A. Fair, and R. J. Madix, Surf. Sci., 1983, 127: 541
CrossRef
ADS
Google scholar
|
[27] |
L. J. Richter and W. Ho, Phys. Rev. B, 1987, 36: 9797
CrossRef
ADS
Google scholar
|
[28] |
C. T. Au, T. J. Zhou, and W. J. Lai, Catal. Lett., 1999, 62: 147
CrossRef
ADS
Google scholar
|
[29] |
N. Watari and S. Ohnishi, J. Chem. Phys., 1997, 106: 1997
CrossRef
ADS
Google scholar
|
[30] |
L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, J. Phys. Chem. C, 2007, 111: 5514
CrossRef
ADS
Google scholar
|
[31] |
C. Zhou, J. Wu, A. Nie, R. C. Forrey, A. Tachibana, and H. Cheng, J. Phys. Chem. C, 2007, 111: 12773
CrossRef
ADS
Google scholar
|
[32] |
C. Zhou, S. Yao, J. Wu, R. Forrey, L. Chen, A. Tachibana, and H. Cheng, Phys. Chem. Chem. Phys., 2008, 10: 5445
CrossRef
ADS
Google scholar
|
[33] |
W. Dong and J. Hafner, Phys. Rev. B, 1997, 56: 15396
CrossRef
ADS
Google scholar
|
[34] |
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244
CrossRef
ADS
Google scholar
|
[35] |
T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 1977, 49: 225
CrossRef
ADS
Google scholar
|
[36] |
F. L. Hirshfeld, Theor. Chim. Acta B, 1977, 44: 129
CrossRef
ADS
Google scholar
|
[37] |
B. Delley, J. Chem. Phys., 2000, 113: 7756
CrossRef
ADS
Google scholar
|
[38] |
B. Delley, J. Chem. Phys., 1990, 92: 508
CrossRef
ADS
Google scholar
|
[39] |
A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R. C. Forrey, and H. Cheng, Int. J. Quantum Chem., 2007, 107: 219
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |