Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review

, , ,

PDF(2467 KB)
PDF(2467 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 356-366. DOI: 10.1007/s11467-009-0050-6
REVIEW ARTICLE
REVIEW ARTICLE

Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review

  • 1,3
  • 2,3
  • 2,3
  • 2,3
Author information +
History +

Abstract

In this review, we present our recent first principles studies on the sequential H2 dissociative chemisorption and H desorption on the Ptn and Pdn clusters (n=2-9, 13). Upon full saturation by H atoms, the calculated H2 dissociative chemisorption energy and H desorption energy on Pt13 and Pd13 clusters are similar to the corresponding values on smaller close-packed clusters. Indeed, the catalytic performances of these subnano clusters do not vary significantly with the particle sizes or shapes. Instead, they are dependent on the surface metal atoms which can be accessed by H atoms. In addition to the coverage dependency of the H2dissociative chemisorption and H sequential desorption energies, the phase transition of both Pt13 and Pd13from the icosahedral to fcc-like structures at certain H coverage was also investigated.

Keywords

hydrogen adsorption / density functional theory / metal clusters / catalysis

Cite this article

Download citation ▾
, , , . Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review. Front. Phys., 2009, 4(3): 356‒366 https://doi.org/10.1007/s11467-009-0050-6

References

[1]
B. C. H. Steele, Nature (London), 1999, 400: 619
CrossRef ADS Google scholar
[2]
S. F. Parker, C. D. Frost, M. Telling, P. Albers, M. Lopez, and K. Seitz, Catal. Today, 2006, 114: 418
CrossRef ADS Google scholar
[3]
P. S. Cremer, X. Su, Y. R. Shen, and G. A. Somorjai, J. Am. Chem. Soc., 1996, 118: 2942
CrossRef ADS Google scholar
[4]
Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128: 726
CrossRef ADS Google scholar
[5]
Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128: 8136
CrossRef ADS Google scholar
[6]
T. E. Felter, S. M. Foiles, M. S. Daw, and R. H. Stulen, Surf. Sci. Lett., 1986, 171: 379
[7]
S. Horch, H. T. Lorensen, S. Helveg, E. Lægsgaard, I. Stensgaard, W. Jacobsen, J. K. Nøskov, and F. Besenbacher, Nature (London), 1999, 398: 134
CrossRef ADS Google scholar
[8]
S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedurftig, and G. Ertl, Phys. Rev. Lett., 2002, 88: 136101
CrossRef ADS Google scholar
[9]
P. Légaré, Surf. Sci., 2004, 559: 169
CrossRef ADS Google scholar
[10]
M. K. Oudenhuijzen, J. A. Bokhoven, J. T. Miller, D. E. Ramaker, and D. C. Koningsberger, J. Am. Chem. Soc., 2005, 127: 1530
CrossRef ADS Google scholar
[11]
X. Liu, H. Dilger, R. A., R. A. Eichel, J. Kunstmann, and E. Roduner, J. Phys. Chem. B, 2006, 110: 2013
CrossRef ADS Google scholar
[12]
G. Papoian, J. K. Nøskov, and R. Hoffmann, J. Am. Chem. Soc., 2000, 122: 4129
CrossRef ADS Google scholar
[13]
D. Godbey and G. A. Somorjai, Surf. Sci., 1988, 204: 301
CrossRef ADS Google scholar
[14]
K. Christmann, Surf. Sci. Rep., 1988, 9: 1
CrossRef ADS Google scholar
[15]
B. Hammer and J. K. Nøskov, Nature (London), 1995, 376: 238
CrossRef ADS Google scholar
[16]
R. A. Olsen, G. J. Kroes, and E. J. Baerends, J. Chem. Phys., 1999, 111: 11155
CrossRef ADS Google scholar
[17]
G. W. Watson, R. P. K. Wells, D. J. Willock, and G. J. Hutchings, J. Phys. Chem. B, 2001, 105: 4889
CrossRef ADS Google scholar
[18]
K. Nobuhara, H. Kasai, W. Q. Dino, and H. Nakanishi, Surf. Sci., 2004, 566-568: 703
CrossRef ADS Google scholar
[19]
K. Nobuhara, H. Kasai, H. Nakanishi, and A. Okiji, J. Appl. Phys., 2002, 92: 5704
CrossRef ADS Google scholar
[20]
L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin, and J. Fierro, J. Chem. Phys., 2006, 125: 164715
CrossRef ADS Google scholar
[21]
Z. P. Liu and P. Hu, J. Am. Chem. Soc., 2003, 125: 1958
CrossRef ADS Google scholar
[22]
X. Q. Gong, A. Selloni, O. Dulub, P. Jacobson, and U. Diebold, J. Am. Chem. Soc., 2008, 130: 370
CrossRef ADS Google scholar
[23]
X. Liu, H. Dilger, R. A. Eichel, J. Kunstmann, and E. Roduner, J. Phys. Chem. B, 2006, 110: 2013
CrossRef ADS Google scholar
[24]
Y. Okamoto, Chem. Phys. Lett., 2006, 429: 209
CrossRef ADS Google scholar
[25]
Y. Okamoto, Chem. Phys. Lett., 2005, 405: 79
CrossRef ADS Google scholar
[26]
G. E. Gdowski, J. A. Fair, and R. J. Madix, Surf. Sci., 1983, 127: 541
CrossRef ADS Google scholar
[27]
L. J. Richter and W. Ho, Phys. Rev. B, 1987, 36: 9797
CrossRef ADS Google scholar
[28]
C. T. Au, T. J. Zhou, and W. J. Lai, Catal. Lett., 1999, 62: 147
CrossRef ADS Google scholar
[29]
N. Watari and S. Ohnishi, J. Chem. Phys., 1997, 106: 1997
CrossRef ADS Google scholar
[30]
L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, J. Phys. Chem. C, 2007, 111: 5514
CrossRef ADS Google scholar
[31]
C. Zhou, J. Wu, A. Nie, R. C. Forrey, A. Tachibana, and H. Cheng, J. Phys. Chem. C, 2007, 111: 12773
CrossRef ADS Google scholar
[32]
C. Zhou, S. Yao, J. Wu, R. Forrey, L. Chen, A. Tachibana, and H. Cheng, Phys. Chem. Chem. Phys., 2008, 10: 5445
CrossRef ADS Google scholar
[33]
W. Dong and J. Hafner, Phys. Rev. B, 1997, 56: 15396
CrossRef ADS Google scholar
[34]
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244
CrossRef ADS Google scholar
[35]
T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 1977, 49: 225
CrossRef ADS Google scholar
[36]
F. L. Hirshfeld, Theor. Chim. Acta B, 1977, 44: 129
CrossRef ADS Google scholar
[37]
B. Delley, J. Chem. Phys., 2000, 113: 7756
CrossRef ADS Google scholar
[38]
B. Delley, J. Chem. Phys., 1990, 92: 508
CrossRef ADS Google scholar
[39]
A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R. C. Forrey, and H. Cheng, Int. J. Quantum Chem., 2007, 107: 219
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2467 KB)

Accesses

Citations

Detail

Sections
Recommended

/