Energy spectrum for a atrongly correlated network and local magnetism
Li-li LIU (刘莉丽), Qiao BI (毕桥)
Energy spectrum for a atrongly correlated network and local magnetism
In this work, we consider a quantum strongly correlated network described by an Anderson s - d mixing model. By introducing the Green function on the projected formalism of the Schrieffer and Wolf transformation, the energy spectrum of the system can be obtained. Using this result we calculate the survivability distribution of the network and discuss the local magnetism in the network, which shows that the survivability is an important statistical characteristic quantity not just to reflect the network topological property but also dynamics.
strongly correlated system / quantum network / Green function
[1] |
P. W. Anderson, Phys. Rev., 1961, 124: 41
CrossRef
ADS
Google scholar
|
[2] |
J. R. Schrieffer and P. A. Wolff, Phys. Rev., 1966, 149: 491
CrossRef
ADS
Google scholar
|
[3] |
G. Bianconi, arXiv: cond-mat/0204506v2
|
[4] |
G. Bianconi, Phys. Rev. E, 2002, 66: 056123
CrossRef
ADS
Google scholar
|
[5] |
D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, and E. Louis, The Hubbard Model, New York: Pienum Press, 1995
|
[6] |
J. R. Schrieffer and P. A. Wolff, Phys. Rev., 1966, 149: 491
CrossRef
ADS
Google scholar
|
[7] |
L. Z. Zheng, Solid State Theory, Beijing: Higher Education Press, 2002 (in Chinese)
|
[8] |
I. Antoniou, Y. Melnikov, and Q. Bi, Physica A, 1997, 246: 97
CrossRef
ADS
Google scholar
|
[9] |
Q. Bi, H. E. Ruda, M. S. Zhang, and X. H. Zeng, Physica A, 2003, 322: 345
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |