Multi-linear variable separation approach to nonlinear systems

Xiao-yan TANG (唐晓艳), Sen-yue LOU (楼森岳)

PDF(338 KB)
PDF(338 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 235-240. DOI: 10.1007/s11467-009-0046-2
REVIEW ARTICLE
REVIEW ARTICLE

Multi-linear variable separation approach to nonlinear systems

Author information +
History +

Abstract

The multi-linear variable separation approach is reviewed in this article. The method has been recently established and successfully solved a large number of nonlinear systems. One of the most exciting findings is that the basic multi-linear variable separation solution can be expressed by a universal formula including two (1+1)-dimensional functions, and at least one is arbitrary for integrable systems. Furthermore, the method has been extended in two different ways so as to enroll more low dimensional functions in the solution.

Keywords

multi-linear variable separation approach (MLVSA) / multi-linear variable separation solution (MLVSS) / universal formula

Cite this article

Download citation ▾
Xiao-yan TANG (唐晓艳), Sen-yue LOU (楼森岳). Multi-linear variable separation approach to nonlinear systems. Front. Phys., 2009, 4(2): 235‒240 https://doi.org/10.1007/s11467-009-0046-2

References

[1]
C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett., 1967, 19: 1095
CrossRef ADS Google scholar
[2]
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge: Cambridge University Press, 1991
[3]
A. Boutet de Monvel, A. S. Fokas, and D. Shepelsky, Lett. Math. Phys., 2003, 65: 199
CrossRef ADS Google scholar
[4]
A. S. Fokas, Nonlinearity, 2004, 17: 1521
CrossRef ADS Google scholar
[5]
A. S. Fokas and A. R. Its, J. Phys. A: Math Gen., 2004, 37: 6091
CrossRef ADS Google scholar
[6]
A. Boutet de Monvel, A. S. Fokas, and D. Shepelsky, Comm. Math. Phys., 2006, 263: 133
CrossRef ADS Google scholar
[7]
C. W. Cao, Sci. China Ser. A, 1990, 33: 528
[8]
Y. Cheng and Y. S. Li, Phys. Lett. A, 1991, 175: 22
CrossRef ADS Google scholar
[9]
S. Y. Lou and L. L. Chen, J. Math. Phys., 1999, 40: 6491
CrossRef ADS Google scholar
[10]
K. S. Chou and C. Z. Qu, J. Phys. A: Math. Gen., 1999, 32: 6271
CrossRef ADS Google scholar
[11]
C. Z. Qu, S. L. Zhang, and R. C Liu., Physica D, 2000, 144: 97
CrossRef ADS Google scholar
[12]
P. G. Estevez, C. Z. Qu, and S. L. Zhang, J. Math. Anal. Appl., 2002, 275: 44
CrossRef ADS Google scholar
[13]
S. L. Zhang, S. Y. Lou, and C. Z. Qu, J. Phys. A: Math. Gen., 2003, 36: 12223
CrossRef ADS Google scholar
[14]
S. L. Zhang and S. Y. Lou, Physica A, 2004, 335: 430
CrossRef ADS Google scholar
[15]
S. Y. Lou and J. Z. Lu, J. Phys. A: Math. Gen., 1996, 29: 4209
CrossRef ADS Google scholar
[16]
X. Y Tang., S. Y. Lou, and Y. Zhang, Phys. Rev. E, 2002, 66: 046601
[17]
X. Y. Tang and S. Y. Lou, Commun. Theor. Phys., 2002, 38: 1
[18]
X. Y. Tang, J. M. Li, and S. Y. Lou, Phys. Scr., 2007, 75: 201
CrossRef ADS Google scholar
[19]
S. Y. Lou and X. Y. Tang, Nonlinear Mathematical Physics Methods, Beijing: Science Press, 2006
[20]
X. Y. Tang, C. L. Chen, and S. Y. Lou, J. Phys. A: Math. Gen., 2002, 35: L293
CrossRef ADS Google scholar
[21]
X. Y. Tang, K. W. Chow, and S. Y. Lou, J. Phys. A: Math. Gen., 2005, 38: 10361
CrossRef ADS Google scholar
[22]
X. Y. Tang, Phys. Lett. A, 2003, 314: 286
CrossRef ADS Google scholar
[23]
S. Y. Lou, C. L. Chen, and X. Y. Tang, J. Math. Phys., 2002, 43: 4078
CrossRef ADS Google scholar
[24]
A. Maccaria, Phys. Lett. A, 2005, 336: 117
CrossRef ADS Google scholar
[25]
A. Maccaria, Chaos, Solitons and Fractals, 2006, 27: 363
CrossRef ADS Google scholar
[26]
A. Maccaria, J. Math. Phys., 2008, 49: 022702
CrossRef ADS Google scholar
[27]
B. B. Thomas, K. K. Victor, and K. T. Crepin, J. Phys. A: Math. Theor., 2008, 41: 135208
CrossRef ADS Google scholar
[28]
A. M. Wazwaz, Appl. Math. Comput., 2008, 204: 817
CrossRef ADS Google scholar
[29]
J. F. Zhang, C. Q. Dai, C. Z. Xu, J. P. Meng, and X. J. Lai, Phys. Lett. A, 2006, 352: 511
CrossRef ADS Google scholar
[30]
J. P. Ying and S. Y. Lou, Chin. Phys. Lett., 2003, 20: 1448
CrossRef ADS Google scholar
[31]
X. Y. Tang and Z. F. Liang, Phys. Lett. A, 2006, 351: 398
CrossRef ADS Google scholar
[32]
X. M. Qian, S. Y. Lou, and X. B. Hu, J. Phys. A: Gen. Math., 2004, 37: 2401
CrossRef ADS Google scholar
[33]
X. M. Qian, S. Y. Lou, and X. B Hu., Z. Naturforsch., 2004, 59a: 645
[34]
S. F. Shen, Phys. Lett. A, 2007, 365: 210
CrossRef ADS Google scholar
[35]
X. Y. Tang and S. Y. Lou, J. Math. Phys., 2003, 44: 4000
CrossRef ADS Google scholar
[36]
X. Y. Tang and S. Y. Lou, Commun. Theor. Phys., 2003, 40: 62
[37]
X. Y. Tang and S. Y. Lou, Chin. Phys. Lett., 2003, 3: 335
[38]
W. K. Schief, Proc. R. Soc. London Ser. A, 1997, 453: 1671
CrossRef ADS Google scholar
[39]
R. Hirota, Phys. Rev. Lett., 1971, 27: 1192
CrossRef ADS Google scholar
[40]
H. C. Hu, S. Y. Lou, and Q. P. Liu, Chin. Phys. Lett., 2003, 20: 1413
CrossRef ADS Google scholar
[41]
H. C. Hu, X. Y. Tang, S. Y. Lou, and Q. P. Liu, Chaos, Soltions and Fractals, 2004, 22: 327
CrossRef ADS Google scholar
[42]
H. C. Hu and S. Y. Lou, Chin. Phys. Lett., 2004, 21: 2073
CrossRef ADS Google scholar
[43]
C. Q. Dai, C. J. Yan, and J. F. Zhang, Commun. Theor. Phys., 2006, 46: 389
CrossRef ADS Google scholar
[44]
C. Q. Dai and J. F. Zhang, J. Math. Phys., 2006, 47: 043501
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(338 KB)

Accesses

Citations

Detail

Sections
Recommended

/