Multi-linear variable separation approach to nonlinear systems

Xiao-yan TANG (唐晓艳) , Sen-yue LOU (楼森岳)

Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 235 -240.

PDF (338KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 235 -240. DOI: 10.1007/s11467-009-0046-2
REVIEW ARTICLE

Multi-linear variable separation approach to nonlinear systems

Author information +
History +
PDF (338KB)

Abstract

The multi-linear variable separation approach is reviewed in this article. The method has been recently established and successfully solved a large number of nonlinear systems. One of the most exciting findings is that the basic multi-linear variable separation solution can be expressed by a universal formula including two (1+1)-dimensional functions, and at least one is arbitrary for integrable systems. Furthermore, the method has been extended in two different ways so as to enroll more low dimensional functions in the solution.

Keywords

multi-linear variable separation approach (MLVSA) / multi-linear variable separation solution (MLVSS) / universal formula

Cite this article

Download citation ▾
Xiao-yan TANG (唐晓艳), Sen-yue LOU (楼森岳). Multi-linear variable separation approach to nonlinear systems. Front. Phys., 2009, 4(2): 235-240 DOI:10.1007/s11467-009-0046-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett., 1967, 19: 1095

[2]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge: Cambridge University Press, 1991

[3]

A. Boutet de Monvel, A. S. Fokas, and D. Shepelsky, Lett. Math. Phys., 2003, 65: 199

[4]

A. S. Fokas, Nonlinearity, 2004, 17: 1521

[5]

A. S. Fokas and A. R. Its, J. Phys. A: Math Gen., 2004, 37: 6091

[6]

A. Boutet de Monvel, A. S. Fokas, and D. Shepelsky, Comm. Math. Phys., 2006, 263: 133

[7]

C. W. Cao, Sci. China Ser. A, 1990, 33: 528

[8]

Y. Cheng and Y. S. Li, Phys. Lett. A, 1991, 175: 22

[9]

S. Y. Lou and L. L. Chen, J. Math. Phys., 1999, 40: 6491

[10]

K. S. Chou and C. Z. Qu, J. Phys. A: Math. Gen., 1999, 32: 6271

[11]

C. Z. Qu, S. L. Zhang, and R. C Liu., Physica D, 2000, 144: 97

[12]

P. G. Estevez, C. Z. Qu, and S. L. Zhang, J. Math. Anal. Appl., 2002, 275: 44

[13]

S. L. Zhang, S. Y. Lou, and C. Z. Qu, J. Phys. A: Math. Gen., 2003, 36: 12223

[14]

S. L. Zhang and S. Y. Lou, Physica A, 2004, 335: 430

[15]

S. Y. Lou and J. Z. Lu, J. Phys. A: Math. Gen., 1996, 29: 4209

[16]

X. Y Tang., S. Y. Lou, and Y. Zhang, Phys. Rev. E, 2002, 66: 046601

[17]

X. Y. Tang and S. Y. Lou, Commun. Theor. Phys., 2002, 38: 1

[18]

X. Y. Tang, J. M. Li, and S. Y. Lou, Phys. Scr., 2007, 75: 201

[19]

S. Y. Lou and X. Y. Tang, Nonlinear Mathematical Physics Methods, Beijing: Science Press, 2006

[20]

X. Y. Tang, C. L. Chen, and S. Y. Lou, J. Phys. A: Math. Gen., 2002, 35: L293

[21]

X. Y. Tang, K. W. Chow, and S. Y. Lou, J. Phys. A: Math. Gen., 2005, 38: 10361

[22]

X. Y. Tang, Phys. Lett. A, 2003, 314: 286

[23]

S. Y. Lou, C. L. Chen, and X. Y. Tang, J. Math. Phys., 2002, 43: 4078

[24]

A. Maccaria, Phys. Lett. A, 2005, 336: 117

[25]

A. Maccaria, Chaos, Solitons and Fractals, 2006, 27: 363

[26]

A. Maccaria, J. Math. Phys., 2008, 49: 022702

[27]

B. B. Thomas, K. K. Victor, and K. T. Crepin, J. Phys. A: Math. Theor., 2008, 41: 135208

[28]

A. M. Wazwaz, Appl. Math. Comput., 2008, 204: 817

[29]

J. F. Zhang, C. Q. Dai, C. Z. Xu, J. P. Meng, and X. J. Lai, Phys. Lett. A, 2006, 352: 511

[30]

J. P. Ying and S. Y. Lou, Chin. Phys. Lett., 2003, 20: 1448

[31]

X. Y. Tang and Z. F. Liang, Phys. Lett. A, 2006, 351: 398

[32]

X. M. Qian, S. Y. Lou, and X. B. Hu, J. Phys. A: Gen. Math., 2004, 37: 2401

[33]

X. M. Qian, S. Y. Lou, and X. B Hu., Z. Naturforsch., 2004, 59a: 645

[34]

S. F. Shen, Phys. Lett. A, 2007, 365: 210

[35]

X. Y. Tang and S. Y. Lou, J. Math. Phys., 2003, 44: 4000

[36]

X. Y. Tang and S. Y. Lou, Commun. Theor. Phys., 2003, 40: 62

[37]

X. Y. Tang and S. Y. Lou, Chin. Phys. Lett., 2003, 3: 335

[38]

W. K. Schief, Proc. R. Soc. London Ser. A, 1997, 453: 1671

[39]

R. Hirota, Phys. Rev. Lett., 1971, 27: 1192

[40]

H. C. Hu, S. Y. Lou, and Q. P. Liu, Chin. Phys. Lett., 2003, 20: 1413

[41]

H. C. Hu, X. Y. Tang, S. Y. Lou, and Q. P. Liu, Chaos, Soltions and Fractals, 2004, 22: 327

[42]

H. C. Hu and S. Y. Lou, Chin. Phys. Lett., 2004, 21: 2073

[43]

C. Q. Dai, C. J. Yan, and J. F. Zhang, Commun. Theor. Phys., 2006, 46: 389

[44]

C. Q. Dai and J. F. Zhang, J. Math. Phys., 2006, 47: 043501

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (338KB)

1059

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/