Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions
Chuan-kui WANG (王传奎), Bin ZOU (邹斌), Xiu-neng SONG (宋秀能), Ying-de LI (李英德), Zong-liang LI (李宗良), Li-li LIN (蔺丽丽)
Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions
The inelastic electron tunneling spectroscopy (IETS) of semifluorinated hexadecanethiol junctions is theoretically studied. The numerical results show that the C–F vibration modes of semifluorinated alkanethiol series can not be detected, and the C–H stretching mode in IETS is related to the CH2 vibration. It is demonstrated that the Raman modes are preferred over IR modes in IETS, which is in good agreement with the experimental measurements presented by Beebe et al. [Nano Lett., 2007, 7(5): 1364].
inelastic electron tunneling spectroscopy / semifluorinated hexadecanethiol / molecular electronics
[1] |
A. Troisi, M. A. Ratner, and A. Nitzan, J. Chem. Phys., 2003, 118(13): 6072
CrossRef
ADS
Google scholar
|
[2] |
M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys., 2004, 121(23): 11965
CrossRef
ADS
Google scholar
|
[3] |
A. Pecchia, A. Di Carlo, A. Gagliardi, S. Sanna, T. Frauenheim, and R. Gutierrez, Nano Lett., 2004, 4(11): 2109
CrossRef
ADS
Google scholar
|
[4] |
W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed, Nano Lett., 2004, 4(4): 643
CrossRef
ADS
Google scholar
|
[5] |
A. S. Hallbäck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema, Nano Lett., 2004, 4(12): 2393
CrossRef
ADS
Google scholar
|
[6] |
J. Jiang, M. Kula, W. Lu, and Y. Luo, Nano Lett., 2005, 5(8): 1551
CrossRef
ADS
Google scholar
|
[7] |
M. Kula, J. Jiang, and Y. Luo, Nano Lett., 2006, 6(8): 1693
CrossRef
ADS
Google scholar
|
[8] |
G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys., 2006, 124(9): 094704
CrossRef
ADS
Google scholar
|
[9] |
A. Troisi and M. A. Ratner, Phys. Chem. Chem. Phys., 2007, 9(19): 2421
CrossRef
ADS
Google scholar
|
[10] |
D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Nature Mater., 2006, 5(11): 901
CrossRef
ADS
Google scholar
|
[11] |
A. Troisi and M. A. Ratner, Nano Lett., 2006, 6(8): 1784
CrossRef
ADS
Google scholar
|
[12] |
A. Troisi and M. A. Ratner, J. Chem. Phys., 2006, 125(21): 214709
CrossRef
ADS
Google scholar
|
[13] |
J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia, J. Phys. Chem. A, 2007, 111(26): 5692
CrossRef
ADS
Google scholar
|
[14] |
J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick, Nano Lett., 2007, 7(5): 1364
CrossRef
ADS
Google scholar
|
[15] |
C. K.Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys., 2001, 3: 5017
CrossRef
ADS
Google scholar
|
[16] |
J. Jiang, M. Kula, and Y. Luo, J. Chem. Phys., 2006, 124(3): 034708
CrossRef
ADS
Google scholar
|
[17] |
M. J. Frisch, G. W. Trucks,
|
[18] |
Jun Jiang, Chuan-kui Wang, and Yi Luo, Quantum Chemistry for Molecular Electronics (QCME-V1.1), Sweden: Royal Institute of Technology, 2006
|
/
〈 | 〉 |