Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions

Chuan-kui WANG (王传奎), Bin ZOU (邹斌), Xiu-neng SONG (宋秀能), Ying-de LI (李英德), Zong-liang LI (李宗良), Li-li LIN (蔺丽丽)

PDF(951 KB)
PDF(951 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 415-419. DOI: 10.1007/s11467-009-0035-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions

Author information +
History +

Abstract

The inelastic electron tunneling spectroscopy (IETS) of semifluorinated hexadecanethiol junctions is theoretically studied. The numerical results show that the C–F vibration modes of semifluorinated alkanethiol series can not be detected, and the C–H stretching mode in IETS is related to the CH2 vibration. It is demonstrated that the Raman modes are preferred over IR modes in IETS, which is in good agreement with the experimental measurements presented by Beebe et al. [Nano Lett., 2007, 7(5): 1364].

Keywords

inelastic electron tunneling spectroscopy / semifluorinated hexadecanethiol / molecular electronics

Cite this article

Download citation ▾
Chuan-kui WANG (王传奎), Bin ZOU (邹斌), Xiu-neng SONG (宋秀能), Ying-de LI (李英德), Zong-liang LI (李宗良), Li-li LIN (蔺丽丽). Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions. Front. Phys., 2009, 4(3): 415‒419 https://doi.org/10.1007/s11467-009-0035-5

References

[1]
A. Troisi, M. A. Ratner, and A. Nitzan, J. Chem. Phys., 2003, 118(13): 6072
CrossRef ADS Google scholar
[2]
M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys., 2004, 121(23): 11965
CrossRef ADS Google scholar
[3]
A. Pecchia, A. Di Carlo, A. Gagliardi, S. Sanna, T. Frauenheim, and R. Gutierrez, Nano Lett., 2004, 4(11): 2109
CrossRef ADS Google scholar
[4]
W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed, Nano Lett., 2004, 4(4): 643
CrossRef ADS Google scholar
[5]
A. S. Hallbäck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema, Nano Lett., 2004, 4(12): 2393
CrossRef ADS Google scholar
[6]
J. Jiang, M. Kula, W. Lu, and Y. Luo, Nano Lett., 2005, 5(8): 1551
CrossRef ADS Google scholar
[7]
M. Kula, J. Jiang, and Y. Luo, Nano Lett., 2006, 6(8): 1693
CrossRef ADS Google scholar
[8]
G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys., 2006, 124(9): 094704
CrossRef ADS Google scholar
[9]
A. Troisi and M. A. Ratner, Phys. Chem. Chem. Phys., 2007, 9(19): 2421
CrossRef ADS Google scholar
[10]
D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Nature Mater., 2006, 5(11): 901
CrossRef ADS Google scholar
[11]
A. Troisi and M. A. Ratner, Nano Lett., 2006, 6(8): 1784
CrossRef ADS Google scholar
[12]
A. Troisi and M. A. Ratner, J. Chem. Phys., 2006, 125(21): 214709
CrossRef ADS Google scholar
[13]
J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia, J. Phys. Chem. A, 2007, 111(26): 5692
CrossRef ADS Google scholar
[14]
J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick, Nano Lett., 2007, 7(5): 1364
CrossRef ADS Google scholar
[15]
C. K.Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys., 2001, 3: 5017
CrossRef ADS Google scholar
[16]
J. Jiang, M. Kula, and Y. Luo, J. Chem. Phys., 2006, 124(3): 034708
CrossRef ADS Google scholar
[17]
M. J. Frisch, G. W. Trucks, , Gaussian 03, Gaussian, Inc., Pittsburgh PA, 2003
[18]
Jun Jiang, Chuan-kui Wang, and Yi Luo, Quantum Chemistry for Molecular Electronics (QCME-V1.1), Sweden: Royal Institute of Technology, 2006

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(951 KB)

Accesses

Citations

Detail

Sections
Recommended

/