The first-principles calculation of molecular conduction
The first-principles calculation of molecular conduction
We used the self-consistent method-based density functional theory (DFT) and non-equilibrium Green’s function (NEGF) to simulate molecular transport. Our numerical calculations for the organic molecular measurement made by Reichert et al. (Phys. Rev. Lett., 2002, 88: 176804) and for the alkanedithiols measurement made by Xu et al. (Science, 2003, 301: 1221) met the related experimental values quite well. This means that the first-principles calculations based on DFT and NEGF can well explain the conduction measurements of some large molecules. The numerical study reveals the fact that molecular conduction does not obey the classic law; in stead it illustrates the quantum behavior. We designed active molecular transistors controlled by the gate bias with high working frequency. They may be the next generation electronic devices.
molecular conduction / molecular transistor / first-principles calculation
[1] |
A. Aviram and M. A. Ratner, Chem. Phys. Lett., 1974, 29: 277
CrossRef
ADS
Google scholar
|
[2] |
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science, 1997, 278: 252
CrossRef
ADS
Google scholar
|
[3] |
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science, 1999, 286: 1550
CrossRef
ADS
Google scholar
|
[4] |
D. I. Gittins, D. Bethell, D. J. Schriffrin, and R. J. Nichols, Nature, 2000, 408: 67
CrossRef
ADS
Google scholar
|
[5] |
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science, 2001, 294: 571
CrossRef
ADS
Google scholar
|
[6] |
J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. Mceuen, and D. C. Ralph, Nature, 2002, 417: 722
CrossRef
ADS
Google scholar
|
[7] |
W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Nature, 2002, 417: 725
CrossRef
ADS
Google scholar
|
[8] |
J. Reichert, R. Ochs, D. Beckmann, H. B.Weber, M. Mayor, and H. v. Löhneysen, Phys. Rev. Lett., 2002, 88: 176804
CrossRef
ADS
Google scholar
|
[9] |
R. H. M. Smit, C. Untiedt, G. Rubio-bollinger, R. C. Segers, and J. M. van Ruitenbeek, Phys. Rev. Lett., 2002, 91: 076805
CrossRef
ADS
Google scholar
|
[10] |
B. Xu and N. J. Tao, Science, 2003, 301: 1221
CrossRef
ADS
Google scholar
|
[11] |
W. Tian, S. Datta, S. H. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, J. Chem. Phys., 1998, 109: 2874
CrossRef
ADS
Google scholar
|
[12] |
M.Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett., 2000, 84: 979
CrossRef
ADS
Google scholar
|
[13] |
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 2001, 63: 245407
CrossRef
ADS
Google scholar
|
[14] |
P. S. Damle, A. W. Ghosh, and S. Datta, Phys. Rev. B, 2001, 64: 201403(R)
CrossRef
ADS
Google scholar
|
[15] |
P. S. Damle, A. W. Ghosh, and S. Datta, Chem. Phys., 2002, 281: 171
CrossRef
ADS
Google scholar
|
[16] |
Y. Xue and M. A. Ratner, Phys. Rev. B, 2003, 68: 115406
CrossRef
ADS
Google scholar
|
[17] |
H. Chen, J. Q. Lu, J. Wu, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2003, 67: 113408
CrossRef
ADS
Google scholar
|
[18] |
C. Zhang, M. H. Du, H. P. Cheng, X. G. Zhang, A. E. Roitberg, and J. L. Krause, Phys. Rev. Lett., 2004, 92: 158301
CrossRef
ADS
Google scholar
|
[19] |
F. Evers, F. Weigend, and M. Koentopp, Phys. Rev. B, 2004, 69: 235411
CrossRef
ADS
Google scholar
|
[20] |
P. Delaney and J. C. Greer, Phys. Rev. Lett., 2004, 93: 036805
CrossRef
ADS
Google scholar
|
[21] |
S. H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys., 2005, 122: 074704
CrossRef
ADS
Google scholar
|
[22] |
M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter, 2007, 19: 103201
CrossRef
ADS
Google scholar
|
[23] |
M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M. Brandbyge, Phys. Rev. Lett., 2008, 100: 226604
CrossRef
ADS
Google scholar
|
[24] |
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2005, 72: 155408
CrossRef
ADS
Google scholar
|
[25] |
M. J. Frisch, G. W. Trucks, H. Schlegel,
|
[26] |
Y. Y. Liang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2008, 129: 024901
CrossRef
ADS
Google scholar
|
[27] |
J. Reichert, H. B. Weber, M. Mayor, and H. V. Löhneysen, Appl. Phys. Lett., 2003, 82: 4137
CrossRef
ADS
Google scholar
|
[28] |
C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett., 2005, 95: 146402
CrossRef
ADS
Google scholar
|
[29] |
J. F. Dobson, G. Vignale, and M. P. Das, Electronic Density Functional Theory: Recent Progress and New Directions, New York: Plenum, 1998
|
[30] |
E. Lörtscher, H. B. Weber, and H. Riel, Phys. Rev. Lett., 2007, 98: 176807
CrossRef
ADS
Google scholar
|
[31] |
F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, Annu. Rev. Phys. Chem., 2007, 58: 535
CrossRef
ADS
Google scholar
|
[32] |
M. Mayor, H. B. Weber, J. Reichert, M. Elbing, C. von Hänisch, D. Beckmann, and M. Fischer, Angew. Chem. Int. Ed., 2003, 42: 5834
CrossRef
ADS
Google scholar
|
[33] |
Y. X. Zhou, F. Jiang, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2007, 75: 245407
CrossRef
ADS
Google scholar
|
[34] |
Z. Crljen, A. Grigoriev, G. Wendin, and K. Stokbro, Phys. Rev. B, 2005, 71: 165316
CrossRef
ADS
Google scholar
|
[35] |
B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, and N. J. Tao, Nano Lett., 2005, 5: 1491
CrossRef
ADS
Google scholar
|
[36] |
E. W. Wong, C. P. Collier, M. Behloradsky, F. M. Raymo, J. F. Stoddart, and J. R. Heath, J. Am. Chem. Soc., 2000, 122: 5831
CrossRef
ADS
Google scholar
|
[37] |
T. Tada, D. Nozaki, M. Kondo, S. Hamayama, and K. Yoshizawa, J. Am. Chem. Soc., 2004, 126: 14182
CrossRef
ADS
Google scholar
|
[38] |
Y. X. Zhou, F. Jiang, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2008, 128: 044704
CrossRef
ADS
Google scholar
|
[39] |
M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P. Kubiak, Phys. Rev. B, 1996, 53: 7626(R)
CrossRef
ADS
Google scholar
|
[40] |
M. Magoda and C. Joachim, Phys. Rev. B, 1997, 56: 4722
CrossRef
ADS
Google scholar
|
[41] |
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science, 2001, 294: 571
CrossRef
ADS
Google scholar
|
[42] |
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, L. A. Nagahara, and S. M. Lindsay, J. Phys. Chem. B, 2002, 106: 8609
CrossRef
ADS
Google scholar
|
[43] |
W. Haiss, R. J. Nichois, H. van Zalinge, S. J. Higgins, D. Bethell, and D. J. Schiffrin, Phys. Chem. Chem. Phys., 2002, 6: 4330
CrossRef
ADS
Google scholar
|
[44] |
V. B. Engelkes, J. M. Beebe, and C. D. Frisbie, J. Am. Chem. Soc., 2004, 126: 14287
CrossRef
ADS
Google scholar
|
[45] |
X. Li, J. He, J. Hihath, B. Xu, S. M. Lindsay, and N. Tao, J. Am. Chem. Soc., 2006, 128: 2135
CrossRef
ADS
Google scholar
|
[46] |
M. A. Reed and J. M. Tour, Sci. Am., 2000, 282: 86
|
[47] |
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Lett. A, 2006, 359: 487
CrossRef
ADS
Google scholar
|
[48] |
Y. Y. Liang, F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2007, 127: 084107
CrossRef
ADS
Google scholar
|
[49] |
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2006, 125: 084710
CrossRef
ADS
Google scholar
|
[50] |
J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23: 5048
CrossRef
ADS
Google scholar
|
[51] |
A. R. Rocha, V. M. Garcia-suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater., 2005, 4: 335
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |