The first-principles calculation of molecular conduction

PDF(2562 KB)
PDF(2562 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 327-336. DOI: 10.1007/s11467-009-0030-x
REVIEW ARTICLE
REVIEW ARTICLE

The first-principles calculation of molecular conduction

Author information +
History +

Abstract

We used the self-consistent method-based density functional theory (DFT) and non-equilibrium Green’s function (NEGF) to simulate molecular transport. Our numerical calculations for the organic molecular measurement made by Reichert et al. (Phys. Rev. Lett., 2002, 88: 176804) and for the alkanedithiols measurement made by Xu et al. (Science, 2003, 301: 1221) met the related experimental values quite well. This means that the first-principles calculations based on DFT and NEGF can well explain the conduction measurements of some large molecules. The numerical study reveals the fact that molecular conduction does not obey the classic law; in stead it illustrates the quantum behavior. We designed active molecular transistors controlled by the gate bias with high working frequency. They may be the next generation electronic devices.

Keywords

molecular conduction / molecular transistor / first-principles calculation

Cite this article

Download citation ▾
. The first-principles calculation of molecular conduction. Front. Phys., 2009, 4(3): 327‒336 https://doi.org/10.1007/s11467-009-0030-x

References

[1]
A. Aviram and M. A. Ratner, Chem. Phys. Lett., 1974, 29: 277
CrossRef ADS Google scholar
[2]
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science, 1997, 278: 252
CrossRef ADS Google scholar
[3]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science, 1999, 286: 1550
CrossRef ADS Google scholar
[4]
D. I. Gittins, D. Bethell, D. J. Schriffrin, and R. J. Nichols, Nature, 2000, 408: 67
CrossRef ADS Google scholar
[5]
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science, 2001, 294: 571
CrossRef ADS Google scholar
[6]
J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. Mceuen, and D. C. Ralph, Nature, 2002, 417: 722
CrossRef ADS Google scholar
[7]
W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Nature, 2002, 417: 725
CrossRef ADS Google scholar
[8]
J. Reichert, R. Ochs, D. Beckmann, H. B.Weber, M. Mayor, and H. v. Löhneysen, Phys. Rev. Lett., 2002, 88: 176804
CrossRef ADS Google scholar
[9]
R. H. M. Smit, C. Untiedt, G. Rubio-bollinger, R. C. Segers, and J. M. van Ruitenbeek, Phys. Rev. Lett., 2002, 91: 076805
CrossRef ADS Google scholar
[10]
B. Xu and N. J. Tao, Science, 2003, 301: 1221
CrossRef ADS Google scholar
[11]
W. Tian, S. Datta, S. H. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, J. Chem. Phys., 1998, 109: 2874
CrossRef ADS Google scholar
[12]
M.Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett., 2000, 84: 979
CrossRef ADS Google scholar
[13]
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 2001, 63: 245407
CrossRef ADS Google scholar
[14]
P. S. Damle, A. W. Ghosh, and S. Datta, Phys. Rev. B, 2001, 64: 201403(R)
CrossRef ADS Google scholar
[15]
P. S. Damle, A. W. Ghosh, and S. Datta, Chem. Phys., 2002, 281: 171
CrossRef ADS Google scholar
[16]
Y. Xue and M. A. Ratner, Phys. Rev. B, 2003, 68: 115406
CrossRef ADS Google scholar
[17]
H. Chen, J. Q. Lu, J. Wu, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2003, 67: 113408
CrossRef ADS Google scholar
[18]
C. Zhang, M. H. Du, H. P. Cheng, X. G. Zhang, A. E. Roitberg, and J. L. Krause, Phys. Rev. Lett., 2004, 92: 158301
CrossRef ADS Google scholar
[19]
F. Evers, F. Weigend, and M. Koentopp, Phys. Rev. B, 2004, 69: 235411
CrossRef ADS Google scholar
[20]
P. Delaney and J. C. Greer, Phys. Rev. Lett., 2004, 93: 036805
CrossRef ADS Google scholar
[21]
S. H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys., 2005, 122: 074704
CrossRef ADS Google scholar
[22]
M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter, 2007, 19: 103201
CrossRef ADS Google scholar
[23]
M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M. Brandbyge, Phys. Rev. Lett., 2008, 100: 226604
CrossRef ADS Google scholar
[24]
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2005, 72: 155408
CrossRef ADS Google scholar
[25]
M. J. Frisch, G. W. Trucks, H. Schlegel, , Gaussian 03, Revision D. 01, Gaussian, Inc., Wallingford CT, 2004
[26]
Y. Y. Liang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2008, 129: 024901
CrossRef ADS Google scholar
[27]
J. Reichert, H. B. Weber, M. Mayor, and H. V. Löhneysen, Appl. Phys. Lett., 2003, 82: 4137
CrossRef ADS Google scholar
[28]
C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett., 2005, 95: 146402
CrossRef ADS Google scholar
[29]
J. F. Dobson, G. Vignale, and M. P. Das, Electronic Density Functional Theory: Recent Progress and New Directions, New York: Plenum, 1998
[30]
E. Lörtscher, H. B. Weber, and H. Riel, Phys. Rev. Lett., 2007, 98: 176807
CrossRef ADS Google scholar
[31]
F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, Annu. Rev. Phys. Chem., 2007, 58: 535
CrossRef ADS Google scholar
[32]
M. Mayor, H. B. Weber, J. Reichert, M. Elbing, C. von Hänisch, D. Beckmann, and M. Fischer, Angew. Chem. Int. Ed., 2003, 42: 5834
CrossRef ADS Google scholar
[33]
Y. X. Zhou, F. Jiang, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B, 2007, 75: 245407
CrossRef ADS Google scholar
[34]
Z. Crljen, A. Grigoriev, G. Wendin, and K. Stokbro, Phys. Rev. B, 2005, 71: 165316
CrossRef ADS Google scholar
[35]
B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, and N. J. Tao, Nano Lett., 2005, 5: 1491
CrossRef ADS Google scholar
[36]
E. W. Wong, C. P. Collier, M. Behloradsky, F. M. Raymo, J. F. Stoddart, and J. R. Heath, J. Am. Chem. Soc., 2000, 122: 5831
CrossRef ADS Google scholar
[37]
T. Tada, D. Nozaki, M. Kondo, S. Hamayama, and K. Yoshizawa, J. Am. Chem. Soc., 2004, 126: 14182
CrossRef ADS Google scholar
[38]
Y. X. Zhou, F. Jiang, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2008, 128: 044704
CrossRef ADS Google scholar
[39]
M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P. Kubiak, Phys. Rev. B, 1996, 53: 7626(R)
CrossRef ADS Google scholar
[40]
M. Magoda and C. Joachim, Phys. Rev. B, 1997, 56: 4722
CrossRef ADS Google scholar
[41]
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science, 2001, 294: 571
CrossRef ADS Google scholar
[42]
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, L. A. Nagahara, and S. M. Lindsay, J. Phys. Chem. B, 2002, 106: 8609
CrossRef ADS Google scholar
[43]
W. Haiss, R. J. Nichois, H. van Zalinge, S. J. Higgins, D. Bethell, and D. J. Schiffrin, Phys. Chem. Chem. Phys., 2002, 6: 4330
CrossRef ADS Google scholar
[44]
V. B. Engelkes, J. M. Beebe, and C. D. Frisbie, J. Am. Chem. Soc., 2004, 126: 14287
CrossRef ADS Google scholar
[45]
X. Li, J. He, J. Hihath, B. Xu, S. M. Lindsay, and N. Tao, J. Am. Chem. Soc., 2006, 128: 2135
CrossRef ADS Google scholar
[46]
M. A. Reed and J. M. Tour, Sci. Am., 2000, 282: 86
[47]
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Lett. A, 2006, 359: 487
CrossRef ADS Google scholar
[48]
Y. Y. Liang, F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2007, 127: 084107
CrossRef ADS Google scholar
[49]
F. Jiang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys., 2006, 125: 084710
CrossRef ADS Google scholar
[50]
J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23: 5048
CrossRef ADS Google scholar
[51]
A. R. Rocha, V. M. Garcia-suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater., 2005, 4: 335
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2562 KB)

Accesses

Citations

Detail

Sections
Recommended

/