Electronic properties of boron nanotubes with axial strain
,
Electronic properties of boron nanotubes with axial strain
The electronic properties of boron nanotubes with axial strain are investigated by first principle calculations. The band gaps of the (3, 3) and (5, 0) boron nanotubes are found to be modified by axial strain significantly. We find that the semiconductor–metal transition occurs for the (3, 3) boron nanotubes with both compressive and tensile strain. While for the (5, 0) boron nanotubes, only the tensile strain induces the semiconductor–metal transition. These boron nanotubes have the largest gaps under compressive strain.
boron nanotube / strain / electronic structure / band gap
[1] |
J. C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys., 2007, 79: 677
CrossRef
ADS
Google scholar
|
[2] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K Geim, <patent>arXiv: 0709.1163v2</patent>
|
[3] |
M. Endo, M. S. Strano, and P. M. Ajayan, Carbon Nanotubes, Topics Appl. Phys., Springer Press, 2008, 111: 13
|
[4] |
P. Avouris, Z. H. Chen, and V. Perebeinos, Nature Nanotechnology, 2007, 2: 605
CrossRef
ADS
Google scholar
|
[5] |
R. Tenne, Nature Nanotechnology, 2006, 1: 103
CrossRef
ADS
Google scholar
|
[6] |
C. L. Yan, J. Liu, F. Liu, J. S. Wu, K. Gao, and D. F. Xue, Nanoscale Res. Lett., 2008, 3: 473
CrossRef
ADS
Google scholar
|
[7] |
D. Ciuparu, R. F. Klie, Y. Zhu, and L. Pfefferle, J. Phys. Chem. B, 2004, 108: 3967
CrossRef
ADS
Google scholar
|
[8] |
N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett., 2007, 98: 166804-1
CrossRef
ADS
Google scholar
|
[9] |
Q. B. Yan, Q. R. Zheng, and G. Su, Phys. Rev. B, 2008, 77: 224106-1
CrossRef
ADS
Google scholar
|
[10] |
A. Y. Liu, R. R. Zope, and M. R. Pederson, Phys. Rev. B, 2008, 78: 155422-1
CrossRef
ADS
Google scholar
|
[11] |
H. Tang and S. Ismail-Beigi, Phys. Rev. Lett., 2007, 99: 115501-1
CrossRef
ADS
Google scholar
|
[12] |
X. Yang, Y. Ding, and J. Ni, Phys. Rev. B, 2008, 77: 041402(R)-1
|
[13] |
K. C Lau and R. Pandey, J. Phys. Chem. B, 2008, 112: 10217
CrossRef
ADS
Google scholar
|
[14] |
A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Nano Lett., 2008, 8: 1314
CrossRef
ADS
Google scholar
|
[15] |
L. A. Chernozatonskii, P. B. Sorokin, and B. I. Yakobson, JETP Lett., 2008, 87: 489
CrossRef
ADS
Google scholar
|
[16] |
Y. Ding, X. Yang, and J. Ni, Appl. Phys. Lett., 2008, 93: 043107-1
CrossRef
ADS
Google scholar
|
[17] |
S. Singh and P. Kruse, Int. J. Nanotechnol., 2008, 5: 900
CrossRef
ADS
Google scholar
|
[18] |
S. Sreekala, X. H. Peng, P. M. Ajayan, and S. K. Nayak, Phys. Rev. B, 2008, 77: 155434-1
CrossRef
ADS
Google scholar
|
[19] |
P. K. Valavala, D. Banyai, M. Seel, and R. Pati, Phys. Rev. B, 2008, 78: 235430-1
CrossRef
ADS
Google scholar
|
[20] |
E. D. Minot, Y. Yaish, V. Sazonova, J. Y. Park, M. Brink, and P. L. McEuen, Phys. Rev. Lett., 2003, 90: 156401-1
CrossRef
ADS
Google scholar
|
[21] |
L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, and J. Yang, J. Chem. Phys., 2008, 129: 074704-1
CrossRef
ADS
Google scholar
|
[22] |
K. H. Hong, J. Kim, S. H. Lee, and J. K. Shin, Nano Lett., 2008, 8: 1335
CrossRef
ADS
Google scholar
|
[23] |
F. Liu, J. Tian, L. Bao, T. Yang, C. Shen, X. Lai, Z. Xiao, W. Xie, S. Deng, J. Chen, J. She, N. Xu, and H. Gao, Adv. Mater., 2008, 20: 2609
CrossRef
ADS
Google scholar
|
[24] |
J Tian. J. Cai, C. Hui, C. Zhang, L. Bao, M. Gao, C. Shen, and H. Gao, Appl. Phys. Lett., 2008, 93: 122105-1
CrossRef
ADS
Google scholar
|
[25] |
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejo, and D. Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745
CrossRef
ADS
Google scholar
|
[26] |
T. Baruah, M. R. Pederson, and R. R. Zope, Phys. Rev. B, 2008, 78: 045408-1
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |