Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion

Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林)

PDF(3897 KB)
PDF(3897 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 144-154. DOI: 10.1007/s11467-009-0026-6
REVIEW ARTICLE
REVIEW ARTICLE

Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion

Author information +
History +

Abstract

The trapping and laser cooling of 40Ca+ ion on the way toward optical frequency standards have been developed. A single 40Ca+ ion is trapped in the miniature Paul trap and laser cooled by two frequency-stabilized diode lasers. A commercial Ti:Sapphire laser system at 729 nm is referenced to a high-finesse cavity to meet the requirements of ultra narrow linewidth of the 4s2S1/2-3d2D5/2 electric quadrupole transition. Its center frequency is preliminarily measured to be 411 042 129 686.1 (2.6) kHz. The attempt to finally lock the 729-nm laser system to atomic transition is made. Further work to improve the accuracy of measurement and the stabilization of system locking is in consideration and preparation.

Keywords

ion trap / optical frequency standard / laser stabilization / laser cooling

Cite this article

Download citation ▾
Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林). Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion. Front. Phys., 2009, 4(2): 144‒154 https://doi.org/10.1007/s11467-009-0026-6

References

[1]
S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, Science, 2004, 306: 1318
CrossRef ADS Google scholar
[2]
H. G. Dehmelt, IEEE Trans. Instrum. Meas., 1982, 31: 83
[3]
R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Phys. Rev. Lett., 2000, 85: 2462
CrossRef ADS Google scholar
[4]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science, 2001, 293: 825
CrossRef ADS Google scholar
[5]
P. J. Blythe, S. A. Webster, H. S. Margolis, S. N. Lea, G. Huang, S.-K. Choi, W. R. C. Rowley, P. Gill, and R. S. Windeler, Phys. Rev. A, 2003, 67: 020501
CrossRef ADS Google scholar
[6]
J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett., 2001, 26: 1589
CrossRef ADS Google scholar
[7]
J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, Opt. Lett., 2000, 25: 1729
CrossRef ADS Google scholar
[8]
H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec and P. Gill, Science, 2004, 306: 1355
CrossRef ADS Google scholar
[9]
T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, Phys. Rev. Lett., 2007, 98: 220801
CrossRef ADS Google scholar
[10]
K. Matsubara, K. Hayasaka, Y. Li, H. Ito, S. Nagano, M. Kajita, and M. Hosokawa, Appl. Phys. Express, 2008, 1: 067011
CrossRef ADS Google scholar
[11]
K. J. Siemsen, A. A. Madej, and B. G. Whitford, IEEE J. Quantum Electron., 1995, 31: 1764
CrossRef ADS Google scholar
[12]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R. E. Drullinger, T.M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science, 2008, 319: 1808
CrossRef ADS Google scholar
[13]
C. Champenois, M. Houssin, C. Lisowski, M. Knoop, M. Vedel, and F. Vedel, Phys. Lett. A, 2004, 331: 298
CrossRef ADS Google scholar
[14]
M. Kajita, Y. Li, K. Matsubara, K. Hayasaka, and M. Hosokawa, Phys. Rev. A, 2005, 72: 043404
CrossRef ADS Google scholar
[15]
F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature, 2003, 422: 408
CrossRef ADS Google scholar
[16]
M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, Phys. Rev. Lett., 2009, 102: 023002
CrossRef ADS Google scholar
[17]
H.-L. Shu, H. Guan, X.-R. Huang, J.-M. Li, and K.-L. Gao, Chin. Phys. Lett., 2005, 22: 1641
CrossRef ADS Google scholar
[18]
H.-L. Shu, B. Guo, H. Guan, Q. Liu, X.-R. Huang, and K.-L. Gao, Chin. Phys. Lett., 2007, 24: 1217
CrossRef ADS Google scholar
[19]
H. Guan, B. Guo. G. L. Huang, H.-L. Shu, X.-R. Huang, and K.-L. Gao, Opt. Commun., 2007, 274: 182
[20]
B. G. Lindsay, K. A. Smith, and F. B. Dunning, Rev. Sci. Instrum., 1991, 62: 1656
CrossRef ADS Google scholar
[21]
K. Matsubara, S. Uetake, H. Ito, Y. Li, K. Hayasaka, and M. Hosokawa, Jpn. J. Appl. Phys., 2005, 44: 229
CrossRef ADS Google scholar
[22]
D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys., 1998, 83: 5025
CrossRef ADS Google scholar
[23]
V. P. Kaftandjian, C. Delsart, and J. C. Keller, Phys. Rev. A, 1981, 23: 1365
CrossRef ADS Google scholar
[24]
R. D. Cowan, The Theory of Atomic Structure and Spectra, California Univ. Press. Berkeley, 1981: 446
[25]
W. Zhang, Y. Y. Zhao, H. N. Han, Q, Du, Z. Y. Wei, B. Guo, Q. Liu, H. Guan, X. R. Huang, and K. L. Gao. Measurement of 729nm optical frequency with a novel frequency comb toward 40Ca+ 4s2S1/2–3d2D5/2 clock transition (in preparing)
[26]
G. Barwood, K. Gao, P. Gill, G. Huang, and H. A. Klein, IEEE Trans. Instrum. Meas., 2001, 50: 543
CrossRef ADS Google scholar
[27]
J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, Phys. Rev. Lett., 1999, 82: 3228
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3897 KB)

Accesses

Citations

Detail

Sections
Recommended

/