Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion
Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林)
Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion
The trapping and laser cooling of 40Ca+ ion on the way toward optical frequency standards have been developed. A single 40Ca+ ion is trapped in the miniature Paul trap and laser cooled by two frequency-stabilized diode lasers. A commercial Ti:Sapphire laser system at 729 nm is referenced to a high-finesse cavity to meet the requirements of ultra narrow linewidth of the 4s2S1/2-3d2D5/2 electric quadrupole transition. Its center frequency is preliminarily measured to be 411 042 129 686.1 (2.6) kHz. The attempt to finally lock the 729-nm laser system to atomic transition is made. Further work to improve the accuracy of measurement and the stabilization of system locking is in consideration and preparation.
ion trap / optical frequency standard / laser stabilization / laser cooling
[1] |
S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, Science, 2004, 306: 1318
CrossRef
ADS
Google scholar
|
[2] |
H. G. Dehmelt, IEEE Trans. Instrum. Meas., 1982, 31: 83
|
[3] |
R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Phys. Rev. Lett., 2000, 85: 2462
CrossRef
ADS
Google scholar
|
[4] |
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science, 2001, 293: 825
CrossRef
ADS
Google scholar
|
[5] |
P. J. Blythe, S. A. Webster, H. S. Margolis, S. N. Lea, G. Huang, S.-K. Choi, W. R. C. Rowley, P. Gill, and R. S. Windeler, Phys. Rev. A, 2003, 67: 020501
CrossRef
ADS
Google scholar
|
[6] |
J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett., 2001, 26: 1589
CrossRef
ADS
Google scholar
|
[7] |
J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, Opt. Lett., 2000, 25: 1729
CrossRef
ADS
Google scholar
|
[8] |
H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec and P. Gill, Science, 2004, 306: 1355
CrossRef
ADS
Google scholar
|
[9] |
T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, Phys. Rev. Lett., 2007, 98: 220801
CrossRef
ADS
Google scholar
|
[10] |
K. Matsubara, K. Hayasaka, Y. Li, H. Ito, S. Nagano, M. Kajita, and M. Hosokawa, Appl. Phys. Express, 2008, 1: 067011
CrossRef
ADS
Google scholar
|
[11] |
K. J. Siemsen, A. A. Madej, and B. G. Whitford, IEEE J. Quantum Electron., 1995, 31: 1764
CrossRef
ADS
Google scholar
|
[12] |
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R. E. Drullinger, T.M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science, 2008, 319: 1808
CrossRef
ADS
Google scholar
|
[13] |
C. Champenois, M. Houssin, C. Lisowski, M. Knoop, M. Vedel, and F. Vedel, Phys. Lett. A, 2004, 331: 298
CrossRef
ADS
Google scholar
|
[14] |
M. Kajita, Y. Li, K. Matsubara, K. Hayasaka, and M. Hosokawa, Phys. Rev. A, 2005, 72: 043404
CrossRef
ADS
Google scholar
|
[15] |
F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature, 2003, 422: 408
CrossRef
ADS
Google scholar
|
[16] |
M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, Phys. Rev. Lett., 2009, 102: 023002
CrossRef
ADS
Google scholar
|
[17] |
H.-L. Shu, H. Guan, X.-R. Huang, J.-M. Li, and K.-L. Gao, Chin. Phys. Lett., 2005, 22: 1641
CrossRef
ADS
Google scholar
|
[18] |
H.-L. Shu, B. Guo, H. Guan, Q. Liu, X.-R. Huang, and K.-L. Gao, Chin. Phys. Lett., 2007, 24: 1217
CrossRef
ADS
Google scholar
|
[19] |
H. Guan, B. Guo. G. L. Huang, H.-L. Shu, X.-R. Huang, and K.-L. Gao, Opt. Commun., 2007, 274: 182
|
[20] |
B. G. Lindsay, K. A. Smith, and F. B. Dunning, Rev. Sci. Instrum., 1991, 62: 1656
CrossRef
ADS
Google scholar
|
[21] |
K. Matsubara, S. Uetake, H. Ito, Y. Li, K. Hayasaka, and M. Hosokawa, Jpn. J. Appl. Phys., 2005, 44: 229
CrossRef
ADS
Google scholar
|
[22] |
D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys., 1998, 83: 5025
CrossRef
ADS
Google scholar
|
[23] |
V. P. Kaftandjian, C. Delsart, and J. C. Keller, Phys. Rev. A, 1981, 23: 1365
CrossRef
ADS
Google scholar
|
[24] |
R. D. Cowan, The Theory of Atomic Structure and Spectra, California Univ. Press. Berkeley, 1981: 446
|
[25] |
W. Zhang, Y. Y. Zhao, H. N. Han, Q, Du, Z. Y. Wei, B. Guo, Q. Liu, H. Guan, X. R. Huang, and K. L. Gao. Measurement of 729nm optical frequency with a novel frequency comb toward 40Ca+ 4s2S1/2–3d2D5/2 clock transition (in preparing)
|
[26] |
G. Barwood, K. Gao, P. Gill, G. Huang, and H. A. Klein, IEEE Trans. Instrum. Meas., 2001, 50: 543
CrossRef
ADS
Google scholar
|
[27] |
J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, Phys. Rev. Lett., 1999, 82: 3228
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |