Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion

Bin GUO (郭彬) , Hua GUAN (管桦) , Qu LIU (刘曲) , Yao HUANG (黄垚) , Wan-cheng QU (屈万成) , Xue-ren HUANG (黄学人) , Ke-lin GAO (高克林)

Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 144 -154.

PDF (3897KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 144 -154. DOI: 10.1007/s11467-009-0026-6
REVIEW ARTICLE

Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion

Author information +
History +
PDF (3897KB)

Abstract

The trapping and laser cooling of 40Ca+ ion on the way toward optical frequency standards have been developed. A single 40Ca+ ion is trapped in the miniature Paul trap and laser cooled by two frequency-stabilized diode lasers. A commercial Ti:Sapphire laser system at 729 nm is referenced to a high-finesse cavity to meet the requirements of ultra narrow linewidth of the 4s2S1/2-3d2D5/2 electric quadrupole transition. Its center frequency is preliminarily measured to be 411 042 129 686.1 (2.6) kHz. The attempt to finally lock the 729-nm laser system to atomic transition is made. Further work to improve the accuracy of measurement and the stabilization of system locking is in consideration and preparation.

Keywords

ion trap / optical frequency standard / laser stabilization / laser cooling

Cite this article

Download citation ▾
Bin GUO (郭彬), Hua GUAN (管桦), Qu LIU (刘曲), Yao HUANG (黄垚), Wan-cheng QU (屈万成), Xue-ren HUANG (黄学人), Ke-lin GAO (高克林). Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion. Front. Phys., 2009, 4(2): 144-154 DOI:10.1007/s11467-009-0026-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, Science, 2004, 306: 1318

[2]

H. G. Dehmelt, IEEE Trans. Instrum. Meas., 1982, 31: 83

[3]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Phys. Rev. Lett., 2000, 85: 2462

[4]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science, 2001, 293: 825

[5]

P. J. Blythe, S. A. Webster, H. S. Margolis, S. N. Lea, G. Huang, S.-K. Choi, W. R. C. Rowley, P. Gill, and R. S. Windeler, Phys. Rev. A, 2003, 67: 020501

[6]

J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett., 2001, 26: 1589

[7]

J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, Opt. Lett., 2000, 25: 1729

[8]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec and P. Gill, Science, 2004, 306: 1355

[9]

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, Phys. Rev. Lett., 2007, 98: 220801

[10]

K. Matsubara, K. Hayasaka, Y. Li, H. Ito, S. Nagano, M. Kajita, and M. Hosokawa, Appl. Phys. Express, 2008, 1: 067011

[11]

K. J. Siemsen, A. A. Madej, and B. G. Whitford, IEEE J. Quantum Electron., 1995, 31: 1764

[12]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R. E. Drullinger, T.M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science, 2008, 319: 1808

[13]

C. Champenois, M. Houssin, C. Lisowski, M. Knoop, M. Vedel, and F. Vedel, Phys. Lett. A, 2004, 331: 298

[14]

M. Kajita, Y. Li, K. Matsubara, K. Hayasaka, and M. Hosokawa, Phys. Rev. A, 2005, 72: 043404

[15]

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature, 2003, 422: 408

[16]

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, Phys. Rev. Lett., 2009, 102: 023002

[17]

H.-L. Shu, H. Guan, X.-R. Huang, J.-M. Li, and K.-L. Gao, Chin. Phys. Lett., 2005, 22: 1641

[18]

H.-L. Shu, B. Guo, H. Guan, Q. Liu, X.-R. Huang, and K.-L. Gao, Chin. Phys. Lett., 2007, 24: 1217

[19]

H. Guan, B. Guo. G. L. Huang, H.-L. Shu, X.-R. Huang, and K.-L. Gao, Opt. Commun., 2007, 274: 182

[20]

B. G. Lindsay, K. A. Smith, and F. B. Dunning, Rev. Sci. Instrum., 1991, 62: 1656

[21]

K. Matsubara, S. Uetake, H. Ito, Y. Li, K. Hayasaka, and M. Hosokawa, Jpn. J. Appl. Phys., 2005, 44: 229

[22]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys., 1998, 83: 5025

[23]

V. P. Kaftandjian, C. Delsart, and J. C. Keller, Phys. Rev. A, 1981, 23: 1365

[24]

R. D. Cowan, The Theory of Atomic Structure and Spectra, California Univ. Press. Berkeley, 1981: 446

[25]

W. Zhang, Y. Y. Zhao, H. N. Han, Q, Du, Z. Y. Wei, B. Guo, Q. Liu, H. Guan, X. R. Huang, and K. L. Gao. Measurement of 729nm optical frequency with a novel frequency comb toward 40Ca+ 4s2S1/2–3d2D5/2 clock transition (in preparing)

[26]

G. Barwood, K. Gao, P. Gill, G. Huang, and H. A. Klein, IEEE Trans. Instrum. Meas., 2001, 50: 543

[27]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, Phys. Rev. Lett., 1999, 82: 3228

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3897KB)

1365

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/