Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering

, ,

PDF(609 KB)
PDF(609 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 378-382. DOI: 10.1007/s11467-009-0024-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering

  • 1
  • 2
  • 2
Author information +
History +

Abstract

The preferable configuration and electronic structure of several types of free radical functionalized boron nitride nanotubes (BNNTs) were investigated by using density functional theory computations. All the free radicals have strong interaction with B atom in the tube, in spite of the electroaffinity of the radicals. However, though a large charge is transferred from tubes to NH2, OH or CN radicals, little change happens to the electronic structure of BNNTs, while COOH and COCl radicals introduce halffilled impurity levels around the Fermi level. Higher functionalization concentration leads to multiple impurity states around the Fermi level, and makes BNNTs p-type semiconductors.

Keywords

BN nanotubes / first-principles computations / functionalization / free radicals

Cite this article

Download citation ▾
, , . Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering. Front. Phys., 2009, 4(3): 378‒382 https://doi.org/10.1007/s11467-009-0024-8

References

[1]
S. Iijima, Nature, 1991, 354: 56
CrossRef ADS Google scholar
[2]
A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B, 1994, 49: 5081
CrossRef ADS Google scholar
[3]
N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science, 1995, 269: 966
CrossRef ADS Google scholar
[4]
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204
CrossRef ADS Google scholar
[5]
D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Scripta Mater., 2001, 44: 1561
CrossRef ADS Google scholar
[6]
Y. Chen, J. Zou, S. J. Campbell, and G. L. Caer, Appl. Phys. Lett., 2004, 84: 2430
CrossRef ADS Google scholar
[7]
C. Y. Zhi, Y. Bando, C. C. Tang, R. G. Xie, T. Sekiguchi, and D. Golberg, J. Am. Chem. Soc., 2005, 127: 15996
CrossRef ADS Google scholar
[8]
X. J. Wu, W. An, and X. C. Zeng, J. Am. Chem. Soc., 2006, 128: 2001
[9]
Y. F. Li, Z. Zhou, and J. J. Zhao, J. Chem. Phys., 2007, 127: 184705
CrossRef ADS Google scholar
[10]
X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys., 2004, 121: 8481
CrossRef ADS Google scholar
[11]
Z. Zhou, J. J. Zhao, Z. F. Chen, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef ADS Google scholar
[12]
C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Phys. Rev. B, 2006, 74: 153413
CrossRef ADS Google scholar
[13]
Y. F. Li, Z. Zhou, and J. J. Zhao, Nanotechnology, 2008, 19: 015202
CrossRef ADS Google scholar
[14]
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244
CrossRef ADS Google scholar
[15]
B. Delley, J. Chem. Phys., 1990, 92: 508
CrossRef ADS Google scholar
[16]
B. Delley, J. Chem. Phys., 2000, 113: 7756
CrossRef ADS Google scholar
[17]
N. E. Christensen and I. Gorczyca, Phys. Rev. B, 1994, 50: 4397
CrossRef ADS Google scholar
[18]
M. V. Veloso, A. G. Souza Filho, J. M. Filho, S. B. Fagan, and R. Mota, Chem. Phys. Lett., 2006, 430: 71
CrossRef ADS Google scholar
[19]
J. J Zhao, H. Park, C. K. Yang, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(609 KB)

Accesses

Citations

Detail

Sections
Recommended

/