Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering
, ,
Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering
The preferable configuration and electronic structure of several types of free radical functionalized boron nitride nanotubes (BNNTs) were investigated by using density functional theory computations. All the free radicals have strong interaction with B atom in the tube, in spite of the electroaffinity of the radicals. However, though a large charge is transferred from tubes to NH2, OH or CN radicals, little change happens to the electronic structure of BNNTs, while COOH and COCl radicals introduce halffilled impurity levels around the Fermi level. Higher functionalization concentration leads to multiple impurity states around the Fermi level, and makes BNNTs p-type semiconductors.
BN nanotubes / first-principles computations / functionalization / free radicals
[1] |
S. Iijima, Nature, 1991, 354: 56
CrossRef
ADS
Google scholar
|
[2] |
A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B, 1994, 49: 5081
CrossRef
ADS
Google scholar
|
[3] |
N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science, 1995, 269: 966
CrossRef
ADS
Google scholar
|
[4] |
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204
CrossRef
ADS
Google scholar
|
[5] |
D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Scripta Mater., 2001, 44: 1561
CrossRef
ADS
Google scholar
|
[6] |
Y. Chen, J. Zou, S. J. Campbell, and G. L. Caer, Appl. Phys. Lett., 2004, 84: 2430
CrossRef
ADS
Google scholar
|
[7] |
C. Y. Zhi, Y. Bando, C. C. Tang, R. G. Xie, T. Sekiguchi, and D. Golberg, J. Am. Chem. Soc., 2005, 127: 15996
CrossRef
ADS
Google scholar
|
[8] |
X. J. Wu, W. An, and X. C. Zeng, J. Am. Chem. Soc., 2006, 128: 2001
|
[9] |
Y. F. Li, Z. Zhou, and J. J. Zhao, J. Chem. Phys., 2007, 127: 184705
CrossRef
ADS
Google scholar
|
[10] |
X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys., 2004, 121: 8481
CrossRef
ADS
Google scholar
|
[11] |
Z. Zhou, J. J. Zhao, Z. F. Chen, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef
ADS
Google scholar
|
[12] |
C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Phys. Rev. B, 2006, 74: 153413
CrossRef
ADS
Google scholar
|
[13] |
Y. F. Li, Z. Zhou, and J. J. Zhao, Nanotechnology, 2008, 19: 015202
CrossRef
ADS
Google scholar
|
[14] |
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244
CrossRef
ADS
Google scholar
|
[15] |
B. Delley, J. Chem. Phys., 1990, 92: 508
CrossRef
ADS
Google scholar
|
[16] |
B. Delley, J. Chem. Phys., 2000, 113: 7756
CrossRef
ADS
Google scholar
|
[17] |
N. E. Christensen and I. Gorczyca, Phys. Rev. B, 1994, 50: 4397
CrossRef
ADS
Google scholar
|
[18] |
M. V. Veloso, A. G. Souza Filho, J. M. Filho, S. B. Fagan, and R. Mota, Chem. Phys. Lett., 2006, 430: 71
CrossRef
ADS
Google scholar
|
[19] |
J. J Zhao, H. Park, C. K. Yang, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |