Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering

Zhen-yu YANG (杨振宇) , Ya-fei LI (李亚飞) , Zhen ZHOU (周震)

Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 378 -382.

PDF (609KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 378 -382. DOI: 10.1007/s11467-009-0024-8
RESEARCH ARTICLE

Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering

Author information +
History +
PDF (609KB)

Abstract

The preferable configuration and electronic structure of several types of free radical functionalized boron nitride nanotubes (BNNTs) were investigated by using density functional theory computations. All the free radicals have strong interaction with B atom in the tube, in spite of the electroaffinity of the radicals. However, though a large charge is transferred from tubes to NH2, OH or CN radicals, little change happens to the electronic structure of BNNTs, while COOH and COCl radicals introduce halffilled impurity levels around the Fermi level. Higher functionalization concentration leads to multiple impurity states around the Fermi level, and makes BNNTs p-type semiconductors.

Keywords

BN nanotubes / first-principles computations / functionalization / free radicals

Cite this article

Download citation ▾
Zhen-yu YANG (杨振宇), Ya-fei LI (李亚飞), Zhen ZHOU (周震). Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering. Front. Phys., 2009, 4(3): 378-382 DOI:10.1007/s11467-009-0024-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Iijima, Nature, 1991, 354: 56

[2]

A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B, 1994, 49: 5081

[3]

N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science, 1995, 269: 966

[4]

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett., 1992, 60: 2204

[5]

D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Scripta Mater., 2001, 44: 1561

[6]

Y. Chen, J. Zou, S. J. Campbell, and G. L. Caer, Appl. Phys. Lett., 2004, 84: 2430

[7]

C. Y. Zhi, Y. Bando, C. C. Tang, R. G. Xie, T. Sekiguchi, and D. Golberg, J. Am. Chem. Soc., 2005, 127: 15996

[8]

X. J. Wu, W. An, and X. C. Zeng, J. Am. Chem. Soc., 2006, 128: 2001

[9]

Y. F. Li, Z. Zhou, and J. J. Zhao, J. Chem. Phys., 2007, 127: 184705

[10]

X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys., 2004, 121: 8481

[11]

Z. Zhou, J. J. Zhao, Z. F. Chen, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363

[12]

C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Phys. Rev. B, 2006, 74: 153413

[13]

Y. F. Li, Z. Zhou, and J. J. Zhao, Nanotechnology, 2008, 19: 015202

[14]

J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244

[15]

B. Delley, J. Chem. Phys., 1990, 92: 508

[16]

B. Delley, J. Chem. Phys., 2000, 113: 7756

[17]

N. E. Christensen and I. Gorczyca, Phys. Rev. B, 1994, 50: 4397

[18]

M. V. Veloso, A. G. Souza Filho, J. M. Filho, S. B. Fagan, and R. Mota, Chem. Phys. Lett., 2006, 430: 71

[19]

J. J Zhao, H. Park, C. K. Yang, and J. P. Lu, J. Phys. Chem. B, 2004, 108: 4227

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (609KB)

1068

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/