Chemically decorated boron-nitride nanoribbons

Xiao-jun WU, Men-hao WU, Xiao Cheng ZENG

PDF(1318 KB)
PDF(1318 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 367-372. DOI: 10.1007/s11467-009-0022-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Chemically decorated boron-nitride nanoribbons

Author information +
History +

Abstract

Motivated by recent studies of graphenen nanoribbons (GNRs), we explored electronic properties of pure and chemically modified boron nitride nanoribbons (BNNRs) using the density functional theory method. Pure BNNRs with both edges fully saturated by hydrogen are semiconducting with wide band gaps. Values of the band gap depend on the width and the type of edge. The chemical decoration of BNNRs’ edges with four different functional groups, including –F, –Cl, –OH, and –NO2, was investigated. The band-gap modulation by chemical decoration may be exploited for nanoelectronic applications.

Keywords

boron–nitride nanoribbons / chemical modification

Cite this article

Download citation ▾
Xiao-jun WU, Men-hao WU, Xiao Cheng ZENG. Chemically decorated boron-nitride nanoribbons. Front. Phys., 2009, 4(3): 367‒372 https://doi.org/10.1007/s11467-009-0022-x

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science, 2004, 306: 666
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 2005, 438: 197
CrossRef ADS Google scholar
[3]
Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 2005, 438: 201
CrossRef ADS Google scholar
[4]
C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, t. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 2006, 312: 1191
CrossRef ADS Google scholar
[5]
C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B, 2004, 108: 19912
CrossRef ADS Google scholar
[6]
M. Y. Han, B. Özyilmaz, Y. B. Zhang, and P. Kim, Phys. Rev. Lett., 2007, 98: 206805
CrossRef ADS Google scholar
[7]
X. L. Li, X. R. Wang, L. Zhang, S. Lee, and H. J. Dai, Science, 2008, 319: 1229
CrossRef ADS Google scholar
[8]
K. Nakada and M. Fujita, Phys. Rev. B, 1996, 54: 17954
CrossRef ADS Google scholar
[9]
Y. Miyamoto, Phys. Rev. B, 1999, 59: 9858
CrossRef ADS Google scholar
[10]
H. Lee, Y. W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B, 2005, 72: 174431
CrossRef ADS Google scholar
[11]
M. Ezawa, Phys. Rev. B, 2006, 73: 045432
CrossRef ADS Google scholar
[12]
Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2006, 97: 216803
CrossRef ADS Google scholar
[13]
V. Barone, O. Hod, and G. E. Scuseria, Nano Lett., 2006, 6: 2748
CrossRef ADS Google scholar
[14]
Q. M. Yan, B. Huang, J. Yu, F. W. Zheng, J. Zang, J. Wu, B. L. Gu, F. Liu, and W. H. Duan, Nano Lett., 2007, 7: 1469
CrossRef ADS Google scholar
[15]
Z. F. Wang, Q. W. Shi, Q. X. Li, X. P. Wang, J. G. Hou, H. X. Zheng, Y, Yao, and J. Chen, App. Phys. Lett., 2007, 91: 053109
[16]
X. J. Wu and X. C. Zeng, Nano Res., 2008, 1: 40
CrossRef ADS Google scholar
[17]
W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett., 2008, 8: 241
CrossRef ADS Google scholar
[18]
J. Fernndez-Rossier and J. J. Palacios, Phys. Rev. Lett., 2007, 99: 177204
CrossRef ADS Google scholar
[19]
O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B, 2007, 76: 233401
CrossRef ADS Google scholar
[20]
O. Hod, V. Barone, and G. E. Scuseria, Phys. Rev. B, 2008, 77: 035411
CrossRef ADS Google scholar
[21]
M. Ezawa, Phys. Rev. B, 2007, 76: 245415
CrossRef ADS Google scholar
[22]
M. Ezawa, Physica E, 2008, 40: 1421
CrossRef ADS Google scholar
[23]
Y. W. Son, M. L. Cohen, and S. G. Louie, Nature, 2006, 444: 347
CrossRef ADS Google scholar
[24]
E. Rudberg, P. Satek, and Y. Luo, Nano Lett., 2007, 7: 2211
CrossRef ADS Google scholar
[25]
O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett., 2007, 7: 2295
CrossRef ADS Google scholar
[26]
E. J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc., 2008, 130: 4224
CrossRef ADS Google scholar
[27]
K. S. Novoselov, A. K.Geim, and S. V. Morozov, Proc. Natl. Acad. Sci. USA, 2005, 102: 10451
CrossRef ADS Google scholar
[28]
A. J. Du, S. C. Smith, and G. Q. Lu, Chem. Phys. Lett., 2007, 477: 181
CrossRef ADS Google scholar
[29]
Z. H. Zhang and W. L. Guo, Phys. Rev. B, 2008, 77: 075403
CrossRef ADS Google scholar
[30]
X. F. Gao, Z. Zhou, Y. L. Zhao, S. Nagase, S. B. Zhang, and Z. F. Chen, J. Phys. Chem. C, 2008, 112: 12677
CrossRef ADS Google scholar
[31]
F. W. Zheng, Z. R. Liu, J. Wu, W. H. Duan, and B. L. Gu, Phys. Rev. B, 2008, 78: 085423
CrossRef ADS Google scholar
[32]
C. H. Park and S. G. Louie, Nano Lett., 2008, 8: 2200
CrossRef ADS Google scholar
[33]
V. Barone and J. E. Peralta, Nano Lett., 2008, 8: 2210
CrossRef ADS Google scholar
[34]
F. W. Zheng, G. Zhou, Z. R. Liu, J. Wu, W. H. Duan, B. L. Gu, and S. B. Zhang, Phys. Rev. B, 2008, 78: 205415
CrossRef ADS Google scholar
[35]
B. Delley, J. Chem. Phys., 1990, 92: 508
CrossRef ADS Google scholar
[36]
B. Delley, J. Chem. Phys., 2003, 113: 7756
CrossRef ADS Google scholar
[37]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[38]
H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13: 5188
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1318 KB)

Accesses

Citations

Detail

Sections
Recommended

/