First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions

, , , ,

PDF(902 KB)
PDF(902 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 398-402. DOI: 10.1007/s11467-009-0020-z
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions

Author information +
History +

Abstract

The conductance of a family of ruthenium-quasi cumulene-ruthenium molecular junctions including different numbers of carbon atoms, both in even numbers and odd numbers, are investigated using a fully self-consistent ab initio approach which combines the non-equilibrium Green’s function formalism with density functional theory. Our calculations demonstrate that although the overall transport properties of the Ru-quasi cumulene-Ru junctions with an even number of carbon atoms are different from those of the junctions with an odd number of carbon atoms, the difference between the corresponding currentvoltage (I-V) characteristics of these molecular junctions declines to lesser than 16% when the voltage goes up. In each group, the molecular junctions give a large transmission around the Fermi level since the Ru-C πbonds can extend the π conjugation of the carbon chains into the Ru electrodes, and their I-Vcharacteristics are almost linear and independent of the chain length, illustrating potential applications as conducting molecular wires in future molecular electronic devices and circuits.

Keywords

molecular electronic devices / density functional theory / non-equilibrium Green’s function / carbon monatomic chains

Cite this article

Download citation ▾
, , , , . First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions. Front. Phys., 2009, 4(3): 398‒402 https://doi.org/10.1007/s11467-009-0020-z

References

[1]
A. Nitzan and M. A. Ratner, Science, 2003, 300: 1384
CrossRef ADS Google scholar
[2]
N. J. Tao, Nature Nanotechnology, 2006, 1: 173
CrossRef ADS Google scholar
[3]
W. Lu and C. M. Lieber, Nature Materials, 2007, 6: 841
CrossRef ADS Google scholar
[4]
Ž. Crljen and G. Baranovi, Phys. Rev. Lett., 2007, 98: 116801
CrossRef ADS Google scholar
[5]
J. Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Millar, and L. H. Doerrer, J. Phys. Chem. B, 2006, 110: 2462
CrossRef ADS Google scholar
[6]
J. Ning, Z. Qian, R. Li, S. Hou, A. R. Rocha, and S. Sanvito, J. Chem. Phys., 2007, 126: 174706
CrossRef ADS Google scholar
[7]
S. Hou, Y. Chen, X. Shen, R. Li, J. Ning, Z. Qian, and S. Sanvito, Chem. Phys., 2008, 354: 107
CrossRef ADS Google scholar
[8]
K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309
CrossRef ADS Google scholar
[9]
P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864
CrossRef ADS Google scholar
[10]
W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133
CrossRef ADS Google scholar
[11]
J. Zhang, S. Hou, R. Li, Z. Qian, R. Han, Z. Shen, X. Zhao, and Z. Xue, Nanotechnology, 2005, 16: 3057
CrossRef ADS Google scholar
[12]
Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys., 2002, 281: 151
CrossRef ADS Google scholar
[13]
S. H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B, 2004, 70: 085410
CrossRef ADS Google scholar
[14]
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 2001, 63: 245407
CrossRef ADS Google scholar
[15]
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B, 2002, 65: 165401
CrossRef ADS Google scholar
[16]
A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B, 2006, 73: 085414
CrossRef ADS Google scholar
[17]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sónchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745
CrossRef ADS Google scholar
[18]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[19]
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64: 1045
CrossRef ADS Google scholar
[20]
S. Datta, Quantum Transport: Atom to Transistor, Cambridge: Cambridge University Press, 2005
[21]
R. Li, S. Hou, J. Zhang, Z. Qian, Z. Shen, and X. Zhao, J. Chem. Phys., 2006, 5: 194113
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(902 KB)

Accesses

Citations

Detail

Sections
Recommended

/