First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions
, , , ,
First-principles calculation on the conductance of ruthenium-quasi cumulene-ruthenium molecular junctions
The conductance of a family of ruthenium-quasi cumulene-ruthenium molecular junctions including different numbers of carbon atoms, both in even numbers and odd numbers, are investigated using a fully self-consistent ab initio approach which combines the non-equilibrium Green’s function formalism with density functional theory. Our calculations demonstrate that although the overall transport properties of the Ru-quasi cumulene-Ru junctions with an even number of carbon atoms are different from those of the junctions with an odd number of carbon atoms, the difference between the corresponding currentvoltage (I-V) characteristics of these molecular junctions declines to lesser than 16% when the voltage goes up. In each group, the molecular junctions give a large transmission around the Fermi level since the Ru-C πbonds can extend the π conjugation of the carbon chains into the Ru electrodes, and their I-Vcharacteristics are almost linear and independent of the chain length, illustrating potential applications as conducting molecular wires in future molecular electronic devices and circuits.
molecular electronic devices / density functional theory / non-equilibrium Green’s function / carbon monatomic chains
[1] |
A. Nitzan and M. A. Ratner, Science, 2003, 300: 1384
CrossRef
ADS
Google scholar
|
[2] |
N. J. Tao, Nature Nanotechnology, 2006, 1: 173
CrossRef
ADS
Google scholar
|
[3] |
W. Lu and C. M. Lieber, Nature Materials, 2007, 6: 841
CrossRef
ADS
Google scholar
|
[4] |
Ž. Crljen and G. Baranovi, Phys. Rev. Lett., 2007, 98: 116801
CrossRef
ADS
Google scholar
|
[5] |
J. Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Millar, and L. H. Doerrer, J. Phys. Chem. B, 2006, 110: 2462
CrossRef
ADS
Google scholar
|
[6] |
J. Ning, Z. Qian, R. Li, S. Hou, A. R. Rocha, and S. Sanvito, J. Chem. Phys., 2007, 126: 174706
CrossRef
ADS
Google scholar
|
[7] |
S. Hou, Y. Chen, X. Shen, R. Li, J. Ning, Z. Qian, and S. Sanvito, Chem. Phys., 2008, 354: 107
CrossRef
ADS
Google scholar
|
[8] |
K. S. Thygesen, Phys. Rev. B, 2006, 73: 035309
CrossRef
ADS
Google scholar
|
[9] |
P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864
CrossRef
ADS
Google scholar
|
[10] |
W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133
CrossRef
ADS
Google scholar
|
[11] |
J. Zhang, S. Hou, R. Li, Z. Qian, R. Han, Z. Shen, X. Zhao, and Z. Xue, Nanotechnology, 2005, 16: 3057
CrossRef
ADS
Google scholar
|
[12] |
Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys., 2002, 281: 151
CrossRef
ADS
Google scholar
|
[13] |
S. H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B, 2004, 70: 085410
CrossRef
ADS
Google scholar
|
[14] |
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 2001, 63: 245407
CrossRef
ADS
Google scholar
|
[15] |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B, 2002, 65: 165401
CrossRef
ADS
Google scholar
|
[16] |
A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B, 2006, 73: 085414
CrossRef
ADS
Google scholar
|
[17] |
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sónchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745
CrossRef
ADS
Google scholar
|
[18] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef
ADS
Google scholar
|
[19] |
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64: 1045
CrossRef
ADS
Google scholar
|
[20] |
S. Datta, Quantum Transport: Atom to Transistor, Cambridge: Cambridge University Press, 2005
|
[21] |
R. Li, S. Hou, J. Zhang, Z. Qian, Z. Shen, and X. Zhao, J. Chem. Phys., 2006, 5: 194113
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |