Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian

Zeraoulia ELHADJ, J. C. SPROTT

PDF(938 KB)
PDF(938 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (1) : 111-121. DOI: 10.1007/s11467-009-0005-y
REVIEW ARTICLE
REVIEW ARTICLE

Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian

Author information +
History +

Abstract

The 3-D quadratic diffeomorphism is defined as a map with a constant Jacobian. A few such examples are well known. In this paper, all possible forms of the 3-D quadratic diffeomorphisms are determined. Some numerical results are also given and discussed.

Keywords

3-D quadratic diffeomorphism / classification / chaos

Cite this article

Download citation ▾
Zeraoulia ELHADJ, J. C. SPROTT. Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian. Front. Phys., 2009, 4(1): 111‒121 https://doi.org/10.1007/s11467-009-0005-y

References

[1]
A. L. Shilnikov, Bifurcation and chaos in the Morioka-Shimizu system, Methods of qualitative theory of differential equations (Gorky), 1986: 180-193; English translation in Selecta Math. Soviet., 1991, 10: 105-117
[2]
A. L. Shilnikov, Physica D, 1993, 62: 338
CrossRef ADS Google scholar
[3]
D. V. Turaev and L. P. Shilnikov, Sb. Math., 1998: 189(2), 137
CrossRef ADS Google scholar
[4]
D. A. Miller and G. Grassi, A discrete generalized hyperchaotic Hénon map circuit, Circuits and Systems, MWSCAS 2001. Proceedings of the 44th IEEE 2001 Midwest Symposium 2001: 328
[5]
G. Baier and M. Klein, Phys. Lett. A, 1990(6-7), 151: 281
CrossRef ADS Google scholar
[6]
G. Grassi and S. Mascolo, A system theory approach for designing crytosystems based on hyperchaos, IEEE Transactions, Circuits & Systems-I: Fundamental theory and applications, 1999, 46(9): 1135
CrossRef ADS Google scholar
[7]
S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Three-Dimensional H′enon-like Maps and Wild Lorenz-like Attractors, International Journal of Bifurcation and Chaos, 2005, 15(11): 3493
CrossRef ADS Google scholar
[8]
S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, Regular and Chaotic Dynamics, 2006, 11(2): 191
CrossRef ADS Google scholar
[9]
S. V. Gonchenko and I. I. Ovsyannikov, Three-dimensional H′enon map in homoclinic bifurcations, 2005, in preparation
[10]
H. E. Lomeli and J. D. Meiss, Nonlinearity, 1998, 11: 557
CrossRef ADS Google scholar
[11]
K. E. Lenz, H. E. Lomeli, and J. D. Meiss, Regular and Chaotic Motion, 1999, 3: 122
CrossRef ADS Google scholar
[12]
J. C. Sprott, Electronic Journal of Theoretical Physics, 2006, 3: 19
[13]
R. L. Devaney, Trans. Am. Math. Soc., 1976, 218: 89
CrossRef ADS Google scholar
[14]
H. Bass, E. H. Connell, and D. Wright, Bull. Amer. Math. Soc. (N.S.), 1982, 7(2): 287
[15]
E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.), 1958, 3: 1
CrossRef ADS Google scholar
[16]
A. J. Dragt and D. T. Abell, Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics ON: Toronto, 1993: 59-85; Amer. Math. Soc.,Providence, RI, 1996
[17]
E. N. Lorenz, J. Atoms. Sc., 1963, 20: 130
[18]
G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications Singapore: World Scientific, 1998
[19]
G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL, USA: CRC Press, 1999
[20]
W. W. Yu, J. Cao, K. W. Wong, and J. Lü, Chaos, 2007, 17(3): 033
[21]
Etienne Forest, Beam Dynamics : A New Attitude and Framework (The Physics and Technology of Particle and Photon Beams), Amsterdam: Harwood Academic, 1998

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(938 KB)

Accesses

Citations

Detail

Sections
Recommended

/