Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian

Zeraoulia ELHADJ , J. C. SPROTT

Front. Phys. ›› 2009, Vol. 4 ›› Issue (1) : 111 -121.

PDF (938KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (1) : 111 -121. DOI: 10.1007/s11467-009-0005-y
REVIEW ARTICLE

Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian

Author information +
History +
PDF (938KB)

Abstract

The 3-D quadratic diffeomorphism is defined as a map with a constant Jacobian. A few such examples are well known. In this paper, all possible forms of the 3-D quadratic diffeomorphisms are determined. Some numerical results are also given and discussed.

Keywords

3-D quadratic diffeomorphism / classification / chaos

Cite this article

Download citation ▾
Zeraoulia ELHADJ, J. C. SPROTT. Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian. Front. Phys., 2009, 4(1): 111-121 DOI:10.1007/s11467-009-0005-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. L. Shilnikov, Bifurcation and chaos in the Morioka-Shimizu system, Methods of qualitative theory of differential equations (Gorky), 1986: 180-193; English translation in Selecta Math. Soviet., 1991, 10: 105-117

[2]

A. L. Shilnikov, Physica D, 1993, 62: 338

[3]

D. V. Turaev and L. P. Shilnikov, Sb. Math., 1998: 189(2), 137

[4]

D. A. Miller and G. Grassi, A discrete generalized hyperchaotic Hénon map circuit, Circuits and Systems, MWSCAS 2001. Proceedings of the 44th IEEE 2001 Midwest Symposium 2001: 328

[5]

G. Baier and M. Klein, Phys. Lett. A, 1990(6-7), 151: 281

[6]

G. Grassi and S. Mascolo, A system theory approach for designing crytosystems based on hyperchaos, IEEE Transactions, Circuits & Systems-I: Fundamental theory and applications, 1999, 46(9): 1135

[7]

S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Three-Dimensional H′enon-like Maps and Wild Lorenz-like Attractors, International Journal of Bifurcation and Chaos, 2005, 15(11): 3493

[8]

S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, Regular and Chaotic Dynamics, 2006, 11(2): 191

[9]

S. V. Gonchenko and I. I. Ovsyannikov, Three-dimensional H′enon map in homoclinic bifurcations, 2005, in preparation

[10]

H. E. Lomeli and J. D. Meiss, Nonlinearity, 1998, 11: 557

[11]

K. E. Lenz, H. E. Lomeli, and J. D. Meiss, Regular and Chaotic Motion, 1999, 3: 122

[12]

J. C. Sprott, Electronic Journal of Theoretical Physics, 2006, 3: 19

[13]

R. L. Devaney, Trans. Am. Math. Soc., 1976, 218: 89

[14]

H. Bass, E. H. Connell, and D. Wright, Bull. Amer. Math. Soc. (N.S.), 1982, 7(2): 287

[15]

E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.), 1958, 3: 1

[16]

A. J. Dragt and D. T. Abell, Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics ON: Toronto, 1993: 59-85; Amer. Math. Soc.,Providence, RI, 1996

[17]

E. N. Lorenz, J. Atoms. Sc., 1963, 20: 130

[18]

G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications Singapore: World Scientific, 1998

[19]

G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL, USA: CRC Press, 1999

[20]

W. W. Yu, J. Cao, K. W. Wong, and J. , Chaos, 2007, 17(3): 033

[21]

Etienne Forest, Beam Dynamics : A New Attitude and Framework (The Physics and Technology of Particle and Photon Beams), Amsterdam: Harwood Academic, 1998

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (938KB)

884

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/