Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian
Zeraoulia ELHADJ, J. C. SPROTT
Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian
The 3-D quadratic diffeomorphism is defined as a map with a constant Jacobian. A few such examples are well known. In this paper, all possible forms of the 3-D quadratic diffeomorphisms are determined. Some numerical results are also given and discussed.
3-D quadratic diffeomorphism / classification / chaos
[1] |
A. L. Shilnikov, Bifurcation and chaos in the Morioka-Shimizu system, Methods of qualitative theory of differential equations (Gorky), 1986: 180-193; English translation in Selecta Math. Soviet., 1991, 10: 105-117
|
[2] |
A. L. Shilnikov, Physica D, 1993, 62: 338
CrossRef
ADS
Google scholar
|
[3] |
D. V. Turaev and L. P. Shilnikov, Sb. Math., 1998: 189(2), 137
CrossRef
ADS
Google scholar
|
[4] |
D. A. Miller and G. Grassi, A discrete generalized hyperchaotic Hénon map circuit, Circuits and Systems, MWSCAS 2001. Proceedings of the 44th IEEE 2001 Midwest Symposium 2001: 328
|
[5] |
G. Baier and M. Klein, Phys. Lett. A, 1990(6-7), 151: 281
CrossRef
ADS
Google scholar
|
[6] |
G. Grassi and S. Mascolo, A system theory approach for designing crytosystems based on hyperchaos, IEEE Transactions, Circuits & Systems-I: Fundamental theory and applications, 1999, 46(9): 1135
CrossRef
ADS
Google scholar
|
[7] |
S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Three-Dimensional H′enon-like Maps and Wild Lorenz-like Attractors, International Journal of Bifurcation and Chaos, 2005, 15(11): 3493
CrossRef
ADS
Google scholar
|
[8] |
S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, Regular and Chaotic Dynamics, 2006, 11(2): 191
CrossRef
ADS
Google scholar
|
[9] |
S. V. Gonchenko and I. I. Ovsyannikov, Three-dimensional H′enon map in homoclinic bifurcations, 2005, in preparation
|
[10] |
H. E. Lomeli and J. D. Meiss, Nonlinearity, 1998, 11: 557
CrossRef
ADS
Google scholar
|
[11] |
K. E. Lenz, H. E. Lomeli, and J. D. Meiss, Regular and Chaotic Motion, 1999, 3: 122
CrossRef
ADS
Google scholar
|
[12] |
J. C. Sprott, Electronic Journal of Theoretical Physics, 2006, 3: 19
|
[13] |
R. L. Devaney, Trans. Am. Math. Soc., 1976, 218: 89
CrossRef
ADS
Google scholar
|
[14] |
H. Bass, E. H. Connell, and D. Wright, Bull. Amer. Math. Soc. (N.S.), 1982, 7(2): 287
|
[15] |
E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.), 1958, 3: 1
CrossRef
ADS
Google scholar
|
[16] |
A. J. Dragt and D. T. Abell, Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics ON: Toronto, 1993: 59-85; Amer. Math. Soc.,Providence, RI, 1996
|
[17] |
E. N. Lorenz, J. Atoms. Sc., 1963, 20: 130
|
[18] |
G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications Singapore: World Scientific, 1998
|
[19] |
G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL, USA: CRC Press, 1999
|
[20] |
W. W. Yu, J. Cao, K. W. Wong, and J. Lü, Chaos, 2007, 17(3): 033
|
[21] |
Etienne Forest, Beam Dynamics : A New Attitude and Framework (The Physics and Technology of Particle and Photon Beams), Amsterdam: Harwood Academic, 1998
|
/
〈 | 〉 |