Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)

PANG Xiao-feng

PDF(3480 KB)
PDF(3480 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (4) : 457-488. DOI: 10.1007/s11467-008-0039-6

Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)

  • PANG Xiao-feng
Author information +
History +

Abstract

The influence of molecular structure disorders and physiological temperature on the states and properties of solitons as transporters of bio-energy are numerically studied through the fourth-order Runge-Kutta method and a new theory based on my paper [Front. Phys. China, 2007, 2(4): 469]. The structure disorders include fluctuations in the characteristic parameters of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the chain-chain interaction coefficient among the three channels and ground state energy resulting from the disorder distributions of masses of amino acid residues and impurities. In this paper, we investigate the behaviors and states of solitons in a single protein molecular chain, and in ?-Helix protein molecules with three channels. In the former we prove first that the new solitons can move without dispersion, retaining its shape, velocity and energy in a uniform and periodic protein molecule. In this case of structure disorder, the fluctuations of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the ground state energy and the disorder distributions of masses of amino acid residues of the proteins influence the states and properties of motion of solitons. However, they are still quite stable and are very robust against these structure disorders, even in the presence of larger disorders in the sequence of masses, spring con-stants and coupling constants. Still, the solitons may disperse or be destroyed when the disorder distribution of the masses and fluctuations of structure parameters are quite great. If the effect of thermal perturbation of the environment on the soliton in nonuniform proteins is considered again, it is still thermally stable at the biological temperature of 300 K, and at the longer time period of 300 ps and larger spacing of 400 amino acids. The new soliton is also thermally stable in the case of motion over a long time period of 300 ps in the region of 300–320 K under the influence of the above structure disorders. However, the soliton disperses in the case of a higher temperature of 325 K and in larger structure disorders. Thus, we determine that the soliton’s lifetime and critical temperature are 300 ps and 300–320 K, respectively. These results are also consistent with analytical data obtained via quantum perturbed theory. In ?-helix protein molecules with three channels, results obtained show that these structure disorders and quantum fluctuations can change the states and features of solitons, decrease their amplitudes, energies and velocities, but they still cannot destroy the solitons, which can still transport steadily along the molecular chains while retaining energy and momentum when the quantum fluctuations are small, such as in structure disorders and quantum fluctuations of 0.67 < ?k < 2,

Cite this article

Download citation ▾
PANG Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II). Front. Phys., 2008, 3(4): 457‒488 https://doi.org/10.1007/s11467-008-0039-6

References

1. X. F.Pang, Front. Phys. China, 2007, 2(4): 469. doi: 10.1007/s11467-007-0060-1
2. A. S.Davydov, J. Theor. Biol., 1973, 38: 559. doi: 10.1016/0022-5193(73)90256-7
3. A. S.Davydov, Phys. Scr., 1979, 20: 387. doi: 10.1088/0031-8949/20/3-4/013
4. A. S.Davydov, Solitons in Molecular Systems, Dordrecht: Reidel Publishing Comp., 1985; 2nd Ed., 1991
5. S.Gheorghiu-Svirschevski, Phys. Rev. E, 2001, 64: 051907. doi: 10.1103/PhysRevE.64.051907
6. Z.Ivic, S.Zekiric, and Z.Przuly, Phys. Lett. A, 2002, 306: 144. doi: 10.1016/S0375-9601(02)01554-2
7. D.Henning, Phys. Rev. E, 2000, 61: 4550. doi: 10.1103/PhysRevE.61.4550
8. D.Henning, Euro. Phys. J. B, 2001, 24: 377. doi: 10.1007/s10051-001-8686-1
9. P. L.Christiansen and A. C.Scott, Davydov's soliton revisited, New York: Plenum Press, 1990
10. A. C.Scott, Phys. Rev. A, 1982, 26: 578. doi: 10.1103/PhysRevA.26.578
11. A. C.Scott, Phys. Rep., 1992, 217: 1. doi: 10.1016/0370-1573(92)90093-F
12. A. C.Scott, Physica D, 1990, 51: 333. doi: 10.1016/0167-2789(91)90243-3
13. D. W.Brown, Phys. Rev. A, 1988, 37: 5010. doi: 10.1103/PhysRevA.37.5010
14. D. W.Brown and Z.Ivic, Phys. Rev. B, 1989, 40: 9876. doi: 10.1103/PhysRevB.40.9876
15. Z.Ivic and D. W.Brown, Phys. Rev. Lett., 1989, 63: 426. doi: 10.1103/PhysRevLett.63.426
16. D. W.Brown, B. J.West, and K.Lindenberg, Phys. Rev. A, 1986, 33: 4104. doi: 10.1103/PhysRevA.33.4104
17. D. W.Brown, K.Lindenberg, and B. J.West, Phys. Rev. B, 1987, 35: 6169. doi: 10.1103/PhysRevB.35.6169
18. X. F.Pang, Chin. J. Biochem. Biophys., 1986, 18: 1
19. X. F.Pang, Chin. J. Atom. Mol. Phys., 1986, 6: 1986
20. X. F.Pang, Chin. Appl. Math., 1986, 10: 276
21. L.Cruzeiro, J.Halding, P. L.Christiansen, O.Skovgard, and A. C.Scott, Phys. Rev. A, 1985, 37: 703
22. L.Cruzeiro-Hansson, Phys. Rev. A, 1992, 45: 4111. doi: 10.1103/PhysRevA.45.4111
23. L.Cruzeiro-Hansson, Phys. Rev. Lett., 1994, 73: 2927. doi: 10.1103/PhysRevLett.73.2927
24. L.Cruzeiro-Hansson, V. M.Kenker, and A. C.Scott, Phys. Lett. A, 1994, 190: 59. doi: 10.1016/0375-9601(94)90366-2
25. W.Förner, Phys. Rev. A, 1991, 44: 2694. doi: 10.1103/PhysRevA.44.2694
26. W.Förner, J. Phys.: Condens. Matt., 1991, 3: 1915, 3235. doi:10.1088/0953-8984/3/12/022
27. W.Förner, J. Phys.: Condens. Matt., 1992, 4: 4333
28. W.Förner, J. Phys.: Condens. Matt., 1993, 5: 823. doi: 10.1088/0953-8984/5/7/009
29. P. S.Lomdahl and W. C.Kerr, Phys. Rev. Lett., 1985, 55: 1235. doi: 10.1103/PhysRevLett.55.1235
30. W. C.Kerr and P. S.Lomdahl, Phys. Rev. B, 1989, 35: 3629. doi: 10.1103/PhysRevB.35.3629
31. X.Wang, D. W.Brown, and K.Lindenberg, Phys. Rev. A, 1998, 37: 3357
32. X.Wang, D. W.Brown, and K.Lindenberg, Phys. Rev. Lett., 1989, 62: 1796. doi: 10.1103/PhysRevLett.62.1796
33. J. P.Cottingham and J. W.Schweitzer, Phys. Rev. Lett., 1989, 62: 1792. doi: 10.1103/PhysRevLett.62.1792
34. J. W.Schweitzer, Phys. Rev. A, 1992, 45: 8914. doi: 10.1103/PhysRevA.45.8914
35. H.Bolterauer and M.Opper, Z. Phys. B, 1991, 82: 95. doi: 10.1007/BF01313991
36. X. F.Pang, J. Phys.: Condens. Matt., 1990, 2: 9541. doi: 10.1088/0953-8984/2/48/008
37. X. F.Pang, Phys. Rev. E, 1994, 49: 4747. doi: 10.1103/PhysRevE.49.4747
38. X. F.Pang, Euro. Phys. J. B, 1999, 10: 415
39. X. F.Pang, Physica D, 2001, 154: 138. doi: 10.1016/S0167-2789(01)00220-2
40. X. F.Pang, Chin. Phys. Lett., 1993, 10: 381
41. X. F.Pang, Chin. Phys. Lett., 1993, 10: 437
42. X. F.Pang, Chin. Phys. Lett., 1993, 10: 573
43. X. F.Pang, Chinese Physics, 2000, 9: 108
44. X. F.Pang, Commun. Theor. Phys., 2001, 35: 763
45. X. F.Pang, The Theory of Nonlinear Quantum Mechanics, Chongqing: Chongqing Press, 1994
46. X. F.Pang, Chinese Science Bulletin, 1993, 38: 1572
47. X. F.Pang, Chinese Science Bulletin, 1993, 38: 1665
48. X. F.Pang, Acta Phys. Slovaca., 1998, 48: 99
49. X. F.Pang, Chin. J. Infrared Mill. Waves, 1993, 12: 377
50. X. F.Pang, Chin. J. Infrared Mill. Waves, 1997, 16: 64
51. X. F.Pang, Chin. J. Infrared Mill. Waves, 1997, 16: 232
52. X. F.Pang, Acta. Phys. Sinica, 1993, 42: 1841
53. X. F.Pang, Acta. Phys. Sinica, 1997, 46: 625
54. X. F.Pang, Chin. J. Atom. Mol. Phys., 1987, 5: 383
55. X. F.Pang, Chin. J. Atom. Mol. Phys., 1995, 12: 411
56. X. F.Pang, Chin. J. Atom. Mol. Phys., 1996, 13: 70
57. X. F.Pang, Chin. J. Atom. Mol. Phys., 1997, 14: 232
58. X. F.Pang, Int. J. Infrared. Mill. Waves, 2001, 22: 277. doi: 10.1023/A:1010796220869
59. X. F.Pang, Int. J. Infrared. Mill. Waves, 2002, 23: 375. doi: 10.1023/A:1015033519725
60. X. F.Pang, Phys. Rev. E, 2000, 62: 6989. doi: 10.1103/PhysRevE.62.6516
61. X. F.Pang, Euro. Phys. J. B, 2001, 19: 297. doi: 10.1007/s100510170339
62. X. F.Pang, Commun. Theor. Phys., 2001, 35: 323
63. X. F.Pang, Commun. Theor. Phys., 2002, 37: 715
64. X. F.Pang, Commun. Theor. Phys., 2004, 41: 470
65. X. F.Pang, Commun. Theor. Phys., 2004, 43: 367
66. X. F.Pang, Int. J. Infrared Mill. Waves, 2001, 22: 291. doi: 10.1023/A:1010748304939
67. X. F.Pang, J. Phys. Chem. Solids., 2001, 62: 793. doi: 10.1016/S0022-3697(00)00261-4
68. X. F.Pang, Chin. J. BioMed. Engineering, 1999, 8: 39
69. X. F.Pang, Chin. J. BioMed. Engineering, 2001, 10: 613
70. X. F.Pang, Phys. Stat. Sol.(b), 2002, 226: 317
71. X. F.Pang and Y. P.Feng, Quantum Mechanics inNonlinear Systems, New Jersey: World Science Publishing Co., 2005 : 471
72. X. F.Pang, Soliton Physics, Chengdu: Sichuan Scien. Tech. Press, 2003 : 673
73. X. F.Pang, H. W.Zhang, J. F.Yu, and Y. H.Luo, Inter. J. Mod. Phys. B, 2005, 19: 4677. doi: 10.1142/S0217979205032991
74. X. F.Pang, H. W.Zhang, and Y. H.Luo, J. Phys.: Condens. Matt., 2006, 18: 613. doi: 10.1088/0953-8984/18/2/018
75. X. F.Pang, H. W.Zhang, J. F.Yu, and Y. H.Luo, Int. J. Mod. Phys. B, 2006, 20: 3027. doi: 10.1142/S0217979206034960
76. X. F.Pang, J. F.Yu, and Y. H.Luo, Int. J. Mod. Phys. B, 2007, 21: 13. doi: 10.1142/S021797920703659X
77. G.Careri, U.Buontempo, F.Galluzzi, A. C.Scott, E.Gratton, and E.Shydmsunder, Phys. Rev. B, 1984, 30: 4689. doi: 10.1103/PhysRevB.30.4689
78. J. C.Eibeck, P. S.Lomdahl, and A. C.Scott, Phys. Rev. B, 1984, 30: 4073
79. J.Stiefel, Einfuhrung in die Numerische Mathematik, Stuttgart: Teubner Verlag, 1965
80. K. E.Atkinson, An Introdution to Numerical Analysis, 2nd Ed., New York: Wiley, 1989
81. X. F.Pang and M. J.Liu, Commun. Theor. Phys., 2007, 48: 369. doi: 10.1088/0253-6102/48/2/034
AI Summary AI Mindmap
PDF(3480 KB)

Accesses

Citations

Detail

Sections
Recommended

/