Ajellium model analysis on quantum growth of metal nanowires and nanomesas

HAN Yong

PDF(783 KB)
PDF(783 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (4) : 436-443. DOI: 10.1007/s11467-008-0037-8

Ajellium model analysis on quantum growth of metal nanowires and nanomesas

  • HAN Yong
Author information +
History +

Abstract

A simple jellium model is used to investigate the stability of a metal nanowire as a function of its size. The theoretical results from the model indicate the quantum selectivity of preferable radii of nanowires, in apparent agreement with the experimental observations. It is consequently suggested that a series of stable “magic numbers” and “instability gaps” observed in the synthesis experiments of Au nanowires is mainly attributed to the quantum-mechanical behavior. These stable radii can be achieved by rearranging atoms during the formation of nanowires. The model is also used to analyze the growth of Au nanomesas on a graphite surface, and the puzzling growth behavior of Au nanomesas can be reasonably explained.

Cite this article

Download citation ▾
HAN Yong. Ajellium model analysis on quantum growth of metal nanowires and nanomesas. Front. Phys., 2008, 3(4): 436‒443 https://doi.org/10.1007/s11467-008-0037-8

References

1. M. L.Cohen and W. D.Knight, Phys. Today, 1990, 43(12): 42. doi: 10.1063/1.881220
2. W. A.de Heer, Rev. Mod. Phys., 1993, 65: 611. doi: 10.1103/RevModPhys.65.611
3. M.Brack, Rev. Mod. Phys., 1993, 65: 677. doi: 10.1103/RevModPhys.65.677
4. T. P.Martin, Phys. Rep., 1996, 273: 199. doi: 10.1016/0370-1573(95)00083-6
5. V.Lindberg and B.Hellsing, J. Phys.: Condens.Matter, 2005, 17: S1075. doi: 10.1088/0953-8984/17/13/004
6. F.Liu, S. N.Khanna, and P.Jena, Phys. Rev. B, 1990, 42: 976. doi: 10.1103/PhysRevB.42.976
7. F. K.Schulte, Surf. Sci., 1976, 55: 427. doi: 10.1016/0039-6028(76)90250-8
8. Y.Han, J. W.Evans, and D.-J.Liu, Surf. Sci., 2008, 602: 2532. doi: 10.1016/j.susc.2008.05.040
9. A. I.Yanson, I. K.Yanson, and J. M.van Ruitenbeek, Nature, 1999, 400: 144. doi: 10.1038/22074
10. A. I.Yanson, I. K.Yanson, and J. M.van Ruitenbeek, Phys. Rev. Lett., 2000, 84: 5832. doi: 10.1103/PhysRevLett.84.5832
11. A. I.Yanson, I. K.Yanson, and J. M.van Ruitenbeek, Phys. Rev. Lett., 2001, 87: 216805. doi: 10.1103/PhysRevLett.87.216805
12. M.Díaz, J. L.Costa-Krämer, E.Medina, A.Hasmy, and P. A.Serena, Nanotechnology, 2003, 14: 113. doi: 10.1088/0957-4484/14/2/302
13. A. I.Mares, A. F.Otte, L. G.Soukiassian, R. H. M.Smit, and J. M.van Ruitenbeek, Phys. Rev. B, 2004, 70: 073401. doi: 10.1103/PhysRevB.70.073401
14. A. I.Mares and J. M.van Ruitenbeek, Phys. Rev. B, 2005, 72: 205402. doi: 10.1103/PhysRevB.72.205402
15. A. I.Mares, D. F.Urban, J.Bürki, H.Grabert, C. A.Stafford, and J.M.van Ruitenbeek, Nanotechnology, 2007, 18: 265403. doi: 10.1088/0957-4484/18/26/265403
16. A. I.Yanson and J. M.van Ruitenbeek, Phys. Rev. Lett., 1997, 79: 2157. doi: 10.1103/PhysRevLett.79.2157
17. I. K.Yanson, O. I.Shklyarevskii, J. M.van Ruitenbeek, and S.Speller, Phys. Rev. B, 2008, 77: 033411. doi: 10.1103/PhysRevB.77.033411
18. T. W.Cornelius, M. E.Toimil-Molares, S.Karim, and R.Neumann, Phys. Rev. B, 2008, 77: 125425. doi: 10.1103/PhysRevB.77.125425
19. Y.Kondo and K.Takayanagi, Science, 2000, 289: 606. doi: 10.1126/science.289.5479.606
20. C. A.Stafford, D.Baeriswy, and J.Bürki, Phys. Rev. Lett., 1997, 79: 2863. doi: 10.1103/PhysRevLett.79.2863
21. J. M.van Ruitenbeek, M. H.Devoret, D.Esteve, and C.Urbina, Phys. Rev. B, 1997, 56: 12566. doi: 10.1103/PhysRevB.56.12566
22. C.Höppler and W.Zwerger, Phys. Rev. Lett., 1998, 80: 1792. doi: 10.1103/PhysRevLett.80.1792
23. D. F.Urban, J.Bürki, C.-H.Zhang, C. A.Stafford, and H.Grabert, Phys. Rev. Lett., 2004, 93: 186403. doi: 10.1103/PhysRevLett.93.186403
24. J.Bürki and C. A.Stafford, Appl. Phys. A, 2005, 81: 1519. doi: 10.1007/s00339-005-3389-8
25. D. F.Urban, J.Bürki, C. A.Stafford, and H.Grabert, Phys. Rev. B, 2006, 74: 245414. doi: 10.1103/PhysRevB.74.245414
26. J. D.McBride, B. V.Tassell, R. C.Jachmann, and J.ThomasP.Beebe, J. Phys. Chem. B, 2001, 105: 3972. doi: 10.1021/jp003214b
27. H.Hövel, Th.Becker, A.Bettac, B.Reihl, M.Tschudy, and E. J.Williams, J. Appl. Phys., 1997, 81: 154. doi: 10.1063/1.364003
28. H.Hövel, Th.Becker, A.Bettac, B.Reihl, M.Tschudy, and E. J.Williams, Appl. Surf. Sci., 1997, 115: 124. doi: 10.1016/S0169-4332(97)80194-8
29. Y.-J.Zhu, A.Schnieders, J. D.Alexander, J.Thomas, and P.Beebe, Langmuir, 2002, 18: 5728. doi: 10.1021/la011801y
30. W. D.Knight, K.Clemenger, W. A.de Heer, W. A.Saunders, M. Y.Chou, and M. L.Cohen, Phys. Rev. Lett., 1984, 52: 2141. doi: 10.1103/PhysRevLett.52.2141
31. R. D.Woods and D. S.Saxon, Phys. Rev., 1954, 95: 577. doi: 10.1103/PhysRev.95.577
32. K.Clemenger, Phys. Rev. B, 1985, 32: 1359. doi: 10.1103/PhysRevB.32.1359
33. S. G.Nilsson, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 1955, 29(16)
34. Y.Han, High Energ. Phys. Nucl., 2000, 24: 546
35. Z.Zhang, Q.Niu, and C.-K.Shih, Phys. Rev. Lett., 1998, 80: 5381. doi: 10.1103/PhysRevLett.80.5381
36. B.Wu and Z.Zhang, Phys. Rev. B, 2008, 77: 035410. doi: 10.1103/PhysRevB.77.035410
37. G.Mills, B.Wang, W.Ho, and H.Metiu, J. Chem. Phys., 2004, 120: 7738. doi: 10.1063/1.1687332
38. Y.Oshima, A.Onga, and K.Takayanagi, Phys. Rev. Lett., 2003, 91: 205503. doi: 10.1103/PhysRevLett.91.205503
39. Y.Han, J. Y.Zhu, F.Liu, S.-C.Li, J.-F.Jia, Y.-F.Zhang, and Q.-K.Xue, Phys. Rev. Lett., 2004, 93: 106102. doi: 10.1103/PhysRevLett.93.106102
40. Y.Han and F.Liu, Front. Phys. China, 2008, 3(1): 41. doi: 10.1007/s11467-008-0006-2
41. E.Ogando, N.Zabala, and M. J.Puska, Nanotechnology 2002, 13: 363. doi: 10.1088/0957-4484/13/3/324
42. R. T.Senger, S.Dag, and S.Ciraci, Phys. Rev. Lett., 2004, 93: 196807. doi: 10.1103/PhysRevLett.93.196807
43. J.-S.Lin, S.-P.Ju, and W.-J.Lee, Phys. Rev. B, 2005, 72: 085448. doi: 10.1103/PhysRevB.72.085448
44. I.Lopez-Salido, D. C.Lim, and Y. D.Kim, Surf. Sci., 2005, 588: 6. doi: 10.1016/j.susc.2005.05.021
AI Summary AI Mindmap
PDF(783 KB)

Accesses

Citations

Detail

Sections
Recommended

/