QU Zhen1, KANG Da-wei1, GAO Xu-tuan2, XIE Shi-jie3
Author information+
1.School of Physics and Microelectronics, Shandong University; 2.School of Physics and Microelectronics, Shandong University; School of Physics, Shandong University of Technology; 3.School of Physics and Microelectronics, Shandong University; National Key Laboratory of Crystal Materials, Shandong University;
Show less
History+
Published
05 Sep 2008
Issue Date
05 Sep 2008
Abstract
DNA (Deoxyribonucleic acid) has recently caught the attention of chemists and physicists. A major reason for this interest is DNA’s potential use in nanoelectronic devices, both as a template for assembling nanocircuits and as an element of such circuits. However, the electronic properties of the DNA molecule remain very controversial. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and bandgap insulators to effective molecular wires and induced superconductors. In this review article, we summarize the wide-ranging experimental and theoretical results of charge transport in DNA. An itinerant electron model is suggested and the effect of the density of itinerant electrons on the conductivity of DNA is studied. Calculations show that a DNA molecule may show conductivity from insulating to metallic, which explains the controversial and profuse electric characteristics of DNA to some extent.
QU Zhen, KANG Da-wei, GAO Xu-tuan, XIE Shi-jie.
Itinerant electron model and conductance of DNA. Front. Phys., 2008, 3(3): 349‒364 https://doi.org/10.1007/s11467-008-0029-8
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. J. M.Warman, M. P.de Haas, and A.Rupprecht, Chem. Phys. Lett., 1996, 249(5–6): 319. doi: 10.1016/0009‐2614(95)01429‐2 2. S.Luryi, J.Xu, and A.Zaslavsky, Future Trends in Microelectronics, USA, New York: John Wiley & Sons Inc., 1999 : 87 3. C.Joachim, J. K.Gimzewski, and A.Aviram, Nature, 2000, 408(6812): 541. doi: 10.1038/35046000 4. J. M.Tour, Acc. Chem. Res., 2000, 33(11): 791. doi: 10.1021/ar0000612 5. A.Aviram and M. A.Ratner, Chem. Phys. Lett., 1974, 29(2): 277. doi: 10.1016/0009‐2614(74)85031‐1 6. A. Aviram and M. A. Ratner (eds.), Molecular ElectronicsScience and Technology: Annals of the New York Academy of Sciences, New York: The New York Academy of Sciences, 1998, Vol. 852 7. A.Aviram, M. A.Ratner, and V.Mujica, Molecular Electronics II: Annalsof the New York Academy of Sciences, New York: The New York Academyof Sciences, 2002, Vol.960 8. C. P.Collier, E. W.Wong, M.Bolohradsky, F. M.Raymo, J. F.Stoddart, P. J.Kuekes, R. S.Williams, and J. R.Heath, Science, 1999, 285: 391. doi: 10.1126/science.285.5426.391 9. C. P.Collier, G.Mattersteig, E. W.Wong, Y.Luo, K.Beverly, J.Sampario, F. M.Raymo, and J. R.Heath, Science, 2001, 289: 1172. doi: 10.1126/science.289.5482.1172 10. E.Braun, Y.Eichen, U.Sivan, and G.Ben-Yoseph, Nature, 1998, 391(6669): 775. doi: 10.1038/35826 11. K.Keren, M.Krueger, R.Gilad, G.Ben-Yoseph, U.Sivan, and E.Braun, Science, 2002, 297: 72. doi: 10.1126/science.1071247 12. R.Rinaldi, A.Biasco, G.Maruccio, V.Arima, P.Visconti, R.Cingolani, P.Facci, F.De Rienzo, R.Di Felice, E.Molinari, M. P.Verbeet, and G. W.Canters, Appl. Phys. Lett., 2003, 82(3): 472. doi: 10.1063/1.1530748 13. R.Rinaldi, E.Branca, R.Cingolani, R.Di Felice, A.Calzolari, E.Molinari, S.Masiero, G.Spada, G.Gottarelli, and A.Garbesi, Annals of the New York Academy of Sciences, 2002, 960: 184 14. Y.Benenson, T.Paz-Elizur, R.Adar, E.Keinan, Z.Livneh, and E.Shapiro, Nature, 2001, 414(6845): 430. doi: 10.1038/35106533 15. S. G.Lemay, J. W.Janssen, M.van den Hout, M.Mooji, M. J.Bronikowski, P. A.Willis, R. E.Smalley, L. P.Kouwenhoven, and C.Dekker, Nature, 2001, 412(6847): 617. doi: 10.1038/35088013 16. W.Liang, M. P.Shores, M.Bockrath, J. R.Long, and H.Park, Nature, 2002, 417(6890): 725. doi: 10.1038/nature00790 17. J. M.Lehn, Angew. Chem. Int. Ed, 1990, 29(11): 1304. doi: 10.1002/anie.199013041 18. C. M.Niemeyer, Angew. Chem. Int. Ed., 1997, 36(6): 585. doi: 10.1002/anie.199705851 19. C. M.Niemeyer, Angew. Chem. Int. Ed., 2001, 40(22): 4128. doi: 10.1002/1521‐3773(20011119)40:22<4128::AID‐ANIE4128>3.0.CO;2‐S 20. T.La Bean, H.Yan, J.Kopatsch, F.Liu, E.Winfree, J. H.Reif, and N. C.Seeman, J. Am. Chem. Soc., 2000, 122(9): 1848. doi: 10.1021/ja993393e 21. N. C.Seeman, Nano Lett., 2001, 1: 22. doi: 10.1021/nl000182v 22. Y.Zhang, R. H.Austin, J.Kraeft, E. C.Cox, and N. P.Ong, Phys. Rev. Lett., 2002, 89: 198102. doi: 10.1103/PhysRevLett.89.198102 23. C.Dekker and M. A.Ratner, Physics World, 2001, 14: 29 24. D. D.Eley and D. I.Spivey, Trans. Faraday. Soc., 1962, 12: 245 25. C. J.Murphy, M. R.Arkin, Y.Jenkins, N. D.Ghatlia, S. H.Bossmann, N. J.Turro, and J. K.Barton, Science, 1993, 262: 1025. doi: 10.1126/science.7802858 26. A. M.Brun and A.Harriman, J. Am. Chem. Soc., 1992, 114(10): 3656. doi: 10.1021/ja00036a013 27. A. M.Brun and A.Harriman, J. Am. Chem. Soc., 1994, 116(23): 10383. doi: 10.1021/ja00102a004 28. A.Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945. doi: 10.1002/(SICI)1521‐3773(19990401)38:7<945::AID‐ANIE945>3.0.CO;2‐S 29. P.Lincoln, E.Tuite, and B.Norden, J. Am. Chem. Soc., 1997, 119(6): 1454. doi: 10.1021/ja9631965 30. B.Giese, Annu. Rev. Biochem., 2002, 71: 51. doi: 10.1146/annurev.biochem.71.083101.134037 31. E. M.Boon, and J. K.Barton, Curr. Opin. Struc.Biol., 2002, 12: 320. doi: 10.1016/S0959‐440X(02)00327‐5 32. P. T.Henderson, D.Jones, G.Hampikian, Y.Kan, and G. B.Schuster, Proc. Natl. Acad. Sci.USA, 1999, 96(15): 8353. doi: 10.1073/pnas.96.15.8353 33. F. D.Lewis, T.Wu, Y.Zhang, R. L.Letsinger, S. R.Green-field, and M. R.Wasielewski, Science, 1997, 277: 673. doi: 10.1126/science.277.5326.673 34. A. A.Voityuk, J.Jortner, M.Bixon, and N.Rosch, Chem. Phys. Lett., 2000, 324(5–6): 430. doi: 10.1016/S0009‐2614(00)00638‐2 35. C.Gómez-Navarro, A.Gil, M.Alvarez, P. J.De Pablo, F.Moreno-Herrero, I.Horcas, R.Fernandez-Sánchez, J.Colchero, J.Gómez Herrero, and A. M.Baró, Nanotechnology, 2002, 13: 314. doi: 10.1088/0957‐4484/13/3/315 36. A.Gil, P. J.De Pablo, J.Colchero, J.Gómez Herrero, and A. M.Baró, Nanotechnology, 2002, 13: 309. doi: 10.1088/0957‐4484/13/3/314 37. C.Gómez-Navarro, F.Moreno-Herrero, P. J.De Pablo, J.Colchero, Gómez Herrero J., and A. M.Baró, Proc. Natl. Acad. Sci.USA, 2002, 99(13): 8484. doi: 10.1073/pnas.122610899 38. M.Bockrath, N.Markovic, A.Shepard, M.Tinkham, L.Gurevich, L. P.Kouwenhoven, M. W.Wu, and L. L.Sohn, Nano Lett., 2002, 2: 187. doi: 10.1021/nl0100724 39. P.Tran, B.Alavi, and G.Gruner, Phys. Rev. Lett., 2000, 85: 1564. doi: 10.1103/PhysRevLett.85.1564 40. H.-W.Fink and C.Schonenberger, Nature, 1999, 398(6726): 407. doi: 10.1038/18855 41. H.-W.Fink, Mol. Life Sci., 2001, 58: 1. doi: 10.1007/PL00000770 42. H.-W.Fink, H.Schmid, E.Ermantraut, and T.Schulz, J. Opt. Soc. Am. A, 1997, 14: 2168. doi: 10.1364/JOSAA.14.002168 43. P. J.De Pablo, F.Moreno-Herrero, J.Colchero, J.Gómez Herrero, P.Herrero, A. M.Baró, P.Ordejón, J. M.Soler, and E.Artacho, Phys. Rev. Lett., 2000, 85: 4992. doi: 10.1103/PhysRevLett.85.4992 44. J. M.Lee, S. K.Ahn, K. S.Kim, Y.Lee, and Y.Roh, Thin Solid Films, 2006, 515: 818. doi: 10.1016/j.tsf.2005.12.185 45. J. S.Lee, L. J. P.Latimer, and R. S.Reid, Biochem. Cell Biol., 1993, 71: 162 46. D.Porath, A.Bezryadin, S.de Vries, and C.Dekker, Nature, 2000, 403(6770): 635. doi: 10.1038/35001029 47. A.Bezryadin and C.Dekker, J. Vac. Sci. Technol.B, 1997, 15(4): 793. doi: 10.1116/1.589411 48. A.Bezryadin, C.Dekker, and G.Schmid, Appl. Phys. Lett., 1997, 71: 1273. doi: 10.1063/1.119871 49. K.-H.Yoo, D. H.Ha, J.-O.Lee, J. W.Park, J.Kim, J. J.Kim, H.-Y.Lee, T.Kawai, and H. Y.Choi, Phys. Rev. Lett., 2001, 87(19): 198102. doi: 10.1103/PhysRevLett.87.198102 50. H.Watanabe, C.Manabe, T.Shigematsu, K.Shimotani, and M.Shimizu, Appl. Phys. Lett., 2001, 79(15): 462. doi: 10.1063/1.1408604 51. L.Cai, H.Tabata, and T.Kawai, Appl. Phys. Lett., 2000, 77(19): 3105. doi: 10.1063/1.1323546 52. T.Kanno, H.Tanaka, N.Miyoshi, and T.Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892. doi: 10.1143/JJAP.39.1892 53. T.Kanno, H.Tanaka, N.Miyoshi, and T.Kawai, Appl. Phys. Lett., 2000, 77: 3848. doi: 10.1063/1.1330565 54. T.Kanno, H.Tanaka, N.Miyoshi, M.Fukuda, and T.Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892. doi: 10.1143/JJAP.39.1892 55. J. S.Hwang, G. S.Lee, K. J.Kong, D. J.Ahn, S. W.Hwang, and D.Ahn, Microelectron. Eng., 2002, 63(1–3): 161. doi: 10.1016/S0167‐9317(02)00641‐X 56. J. S.Hwang, G. S.Lee, D.Ahn, G. S.Lee, D. J.Ahn, and S. W.Hwang, Appl. Phys. Lett., 2002, 81(6):1134. doi: 10.1063/1.1498862 57. Private communication. 58. T.Muir, E.Morales, J.Root, I.Kumar, B.Garcia, C.Vellandi, D.Jenigian, T.Marsh, E.Henderson, and J.Vesenka, J. Vac. Sci. Technol.A, 1998, 16(3): 1172. doi: 10.1116/1.581254 59. Y.Zhang, R. H.Austin, J.Kraeft, E. C.Cox, and N. P.Ong, Phys. Rev. Lett., 2002, 89: 189102 60. K. W.Hipps, Science, 2001, 294: 536. doi: 10.1126/science.1065708 61. X. D.Cui, A.Primak, X.Zarate, J.Tomfohr, O. F.Sankey, A. L.Moore, T. A.Moore, D.Gust, G.Harris, and S. M.Lindsay, Science, 2001, 294: 571. doi: 10.1126/science.1064354 62. D. H.Ha, H.Nham, K.-H.Yoo, H.So, H. Y.Lee, and T.Kawai, Chem. Phys. Lett., 2002, 355(5–6): 405. doi: 10.1016/S0009‐2614(02)00142‐2 63. H.-Y.Lee, H.Tanaka, Y.Otsuka, K.-H.Yoo, J.-O.Lee, and T.Kawai, Appl. Phys. Lett., 2002, 80: 1670. doi: 10.1063/1.1456972 64. T.Kleine-Ostmann, C.Jördens, and K.Baaske, Appl. Phys. Lett., 2006, 88: 102102. doi: 10.1063/1.2182027 65. K. S.Kim, S. K.Ahn, Y.Lee, J. M.Lee, and Y.Roh, J. Korea. Phys. Soc., 2005, 47: S535 66. K. S.Kim, S. K.Ahn, Y.Lee, J. M.Lee, and Y.Roh, Thin Solid Films, 2006, 515: 822. doi: 10.1016/j.tsf.2005.12.187 67. P.Maragakis, R. L.Barnett, E.Kaxiras, M.Elstner, and T.Frauenheim, Phys. Rev. B, 2002, 66: 241104. doi: 10.1103/PhysRevB.66.241104 68. H.Wang, J. P.Lewis, and O. F.Sankey, Phys. Rev. Lett., 2004, 93: 016401. doi: 10.1103/PhysRevLett.93.016401 69. R.Di Felice, A.Calzolari, E.Molinari, and A.Garbesi, Phys. Rev. B, 2001, 65(4): 045104. doi: 10.1103/PhysRevB.65.045104 70. H.Ymada, E. B.Starikov, D.Hennig, and J. F. R.Archilla, Eur. Phys. J. E, 2005, 17: 149. doi: 10.1140/epje/i2004‐10135‐8 71. S.Priyadarshy, S. M.Risser, and D. N.Beratan, J. Biol. Inorg. Chem., 1998, 3(2): 196. doi: 10.1007/s007750050221 72. E. S.Krider and T. J.Meade, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223 73. T. L.Netzel, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223 74. D. N.Beratan, S.Priyadarshy, and S. M.Risser, Chem. Biol., 1997, 4(1): 3. doi: 10.1016/S1074‐5521(97)90230‐1 75. M.Bixon, B.Giese, S.Wessely, T.Langenbacher, M. E.Michel Beyerle, and J.Jortner, Proc. Natl. Acad. Sci. USA, 1999, 96: 11713. doi: 10.1073/pnas.96.21.11713 76. M.Bixon and J.Jortner, J. Phys. Chem. B, 2000, 104: 3906. doi: 10.1021/jp9936493 77. J.Jortner, M.Bixon, A.Voityuk, and N.Rosch, J. Phys. Chem. A, 2002, 106(33): 7599. doi: 10.1021/jp014232b 78. A. A.Voityuk, N.Rosch, M.Bixon, and J.Jortner, J. Phys. Chem. B, 2000, 104: 9740. doi: 10.1021/jp001109w 79. E. C.Grozema, Y. A.Berlin, and L. D. A.Siebbeles, J. Am. Chem. Soc., 2000, 122(51): 10903 80. Y.-J.Ye, R. S.Chen, F.Chen, J.Sun, and J.Ladik, Solid State Commun., 2001, 119(3): 175. doi: 10.1016/S0038‐1098(01)00204‐6 81. G.Brunaud, F.Castet, A.Fritsch, and L.Ducasse, Phys. Chem. Chem. Phys., 2002, 4: 6072. doi: 10.1039/b208655g 82. D.Bicout and E.Kats, Phys. Lett. A, 2002, 300(4–5): 479. doi: 10.1016/S0375‐9601(02)00848‐4 83. Y.Berlin, A. L.Burin, and M. A.Ratner, J. Phys. Chem. A, 2000, 104: 443. doi: 10.1021/jp9933323 84. Y.Berlin, A. L.Burin, and M. A.Ratner, J. Am. Chem. Soc., 2001, 123(2): 260. doi: 10.1021/ja001496n 85. Y.Berlin, A. L.Burin, L. D. A.Siebbeles, and M. A.Ratner, J. Phys. Chem. A, 2001, 105: 5666. doi: 10.1021/jp004436c 86. Y. A.Berlin, A. L.Burin, and M. A.Ratner, Superlattice Microstruct., 2000, 28(241): 241. doi: 10.1006/spmi.2000.0915 87. Y. A.Berlin, A. L.Burin, and M. A.Ratner, Chem. Phys., 2002, 275(1–3): 61. doi: 10.1016/S0301‐0104(01)00536‐5 88. X.Li and Y.Yan, J. Chem. Phys., 2001, 115(9): 4169. doi: 10.1063/1.1392368 89. X.Li, H. Y.Zhang, and Y.Yan, J. Phys. Chem. A, 2001, 105(51): 9563. doi: 10.1021/jp011965n 90. X.Li and Y.Yan, Appl. Phys. Lett., 2001, 79: 2190. doi: 10.1063/1.1407860 91. G.Cuniberti, L.Craco, D.Porath, and C.Dekker, Phys. Rev. B, 2002, 65: 241314. doi: 10.1103/PhysRevB.65.241314 92. Y.Zhu, C. C.Kaun, and H.Guo, Phys. Rev. B., 2004, 69: 245112. doi: 10.1103/PhysRevB.69.245112 93. X. F.Wang and T.Chakraborty, Phys. Rev. Lett., 2006, 97: 106602. doi: 10.1103/PhysRevLett.97.106602 94. B.Giese, J.Amaudrut, A. K.Köhler, M.Spormann, and S.Wessely, Nature, 2001, 412: 318. doi: 10.1038/35085542 95. Z. G.Yu and X.Song, Phys. Rev. Lett., 2001, 86: 6018. doi: 10.1103/PhysRevLett.86.6018 96. J. H.Wei and K. S.Chan, J. Phys.: Condens.Matter, 2007, 19: 286101. doi: 10.1088/0953‐8984/19/28/286101 97. A. V.Malyshev, Phy. Rev. Lett., 2007, 98: 096801. doi: 10.1103/PhysRevLett.98.096801 98. E.Maciá, F.Triozon, and S.Roche, Phys. Rev. B, 2005, 71: 113106. doi: 10.1103/PhysRevB.71.113106 99. J.Yi and B. J.Kim, Phys. Rev. B, 2007, 75: 035111. doi: 10.1103/PhysRevB.75.035111 100. B.Xu and P.Zhang, X.Li, and N.Tao, NanoLett., 2004, 4: 1105. doi: 10.1021/nl0494295 101. W. P.Su and J. R.Schrieffer, Proc. Natl. Acad. Sci.USA, 1980, 77: 5626. doi: 10.1073/pnas.77.10.5626 102. E. M.Conwell, Phys. Rev. B, 1998, 57: R12670. doi: 10.1103/PhysRevB.57.R12670 103. S. V.Rakhmanova and E. M.Conwell, Appl. Phys. Lett., 1999, 75: 1518. doi: 10.1063/1.124741 104. G. M.Silva, Phys. Rev. B, 2000, 61: 10777. doi: 10.1103/PhysRevB.61.10777 105. C.daS.Pinheiro and G. M.e Silva, Phys. Rev. B, 2002, 65: 094304. doi: 10.1103/PhysRevB.65.094304 106. Å.Johansson and S.Stafström, Phys. Rev. Lett., 2001, 86: 3602. doi: 10.1103/PhysRevLett.86.3602 107. Å.Johansson and S.Stafström, Phys. Rev. B, 2003, 68: 035206. doi: 10.1103/PhysRevB.68.035206 108. A. A.Johansson and S.Stafström, Phys. Rev. B, 2004, 69: 235205. doi: 10.1103/PhysRevB.69.235205 109. Yu J. F., Wu C. Q., Sun X., and K.Nasu, Phys.Rev. B, 2004, 70: 064303. doi: 10.1103/PhysRevB.70.064303 110. X. J.Liu, K.Gao, J. Y.Fu, Y.Li, J. H.Wei, and S. J.Xie, Phys. Rev. B, 2006, 74: 172301. doi: 10.1103/PhysRevB.74.172301 111. Y.Li, X. J.Liu, J. Y.Fu, D. S.Liu, S. J.Xie, and L. M.Mei, Phys. Rev. B, 2006, 74: 184303. doi: 10.1103/PhysRevB.74.184303 112. K.Gao, X. J.Liu, D. S.Liu, and S. J.Xie, Phys. Rev. B, 2007, 75: 205412. doi: 10.1103/PhysRevB.75.205412 113. V. D.Lakhno, J. Biol. Phys., 2001, 26(2): 133. doi: 10.1023/A:1005275211233 114. Z.Hermon, S.Caspi, and E.Ben-Jacob, Europhys. Lett., 1998, 43(4): 482. doi: 10.1209/epl/i1998‐00385‐6 115. E. M.Conwell and S. V.Rakhmanova, Proc. Natl. Acad. Sci.USA, 2000, 97: 4556. doi: 10.1073/pnas.050074497 116. S. V.Rakhmanova and E. M.Conwell, J. Phys. Chem. B, 2001, 105: 2056. doi: 10.1021/jp0036285 117. E. M.Conwell and D. M.Basko, Synthetic Metals, 2003, 137: 1381. doi: 10.1016/S0379‐6779(02)01151‐7 118. J. H.Park, H. Y.Choi, and E. M.Conwell, J. Phys. Chem. B, 2004, 108: 19483. doi: 10.1021/jp046968p 119. E. M.Conwell, J. H.Park, and H. Y.Choi, J. Phys. Chem. B, 2005, 109: 9760. doi: 10.1021/jp044485f 120. E. M.Conwell and S. M.Bloch, J. Phys. Chem. B, 2006, 110: 5801. doi: 10.1021/jp0553986 121. D.Ly, Y.Kan, B.Armitage, and G. B.Schuster, J. Am. Chem. Soc., 1996, 118(36): 8747. doi: 10.1021/ja9615785 122. D.Ly, L.Sanii, and G. B.Schuster, J. Am. Chem. Soc., 1999, 121(40): 9400. doi: 10.1021/ja991753s 123. B.Zheng, J.Wu, W. Q.Sun, and C. B.Liu, Chem. Phys. Lett., 2006, 425: 123. doi: 10.1016/j.cplett.2006.05.022 124. D. T.Breslin, J. E.Coury, J. R.Anderson, L.McFail-Isom, Y.Kan, L. D.Williams, L. A.Bottomley, and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(21): 5043. doi: 10.1021/ja963607h 125. S. M.Gasper and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(52): 12762. doi: 10.1021/ja972496z 126. J. H.Wei, L. X.Wang, K. S.Chan, and Y. J.Yan, Phys. Rev. B, 2005, 72: 064304. doi: 10.1103/PhysRevB.72.064304 127. G. B.Schuster, Acc. Chem. Res., 2000, 33(4): 253. doi: 10.1021/ar980059z 128. B.Armitage, D.Ly, T.Koch, H.Frydenlund, H.Orum, H. G.Baand, and G. B.Schuster, Proc. Natl. Acad. Sci. USA, 1997, 94: 12320. doi: 10.1073/pnas.94.23.12320 129. D.Hennig, J. F. R.Archilla, and J.Agarwal, Physica D, 2003, 180: 256 130. D.Hennig, E. B.Starikov, J. F. R.Archilla, and F.Palmero, J. Bio. Phys., 2004, 30: 227. doi: 10.1023/B:JOBP.0000046721.92623.a9 131. D.Hennig and J. F. R.Archilla, Physica A, 2004, 331: 579. doi: 10.1016/j.physa.2003.09.053 132. R.Bruinsma, G.Gruner, M. R. D.Orsogna, and J.Rudnick, Phys. Rev. Lett., 2000 : 85 133. R. N.Barnett, C. L.Cleveland, A.Joy, U.Landman, and G. B.Schuste, Science, 2001, 294: 567. doi: 10.1126/science.1062864 134. M.Hjort and S.Stafstrom, Phys. Rev. Lett., 2001, 87: 228101. doi: 10.1103/PhysRevLett.87.228101 135. C. R.Cantor, P. R.Schimmel, Biophysical Chemistry,Part 3: The Behavior of Biological Macromolecules, Chapter 19, New York: W. H. Freeman and Company, 1980 : 1207 136. F. C.Grozema, L. D. A.Siebbeles, Y. A.Berlin, and M. A.Ratner, Chem. Phys. Chem., 2002, 3: 536 137. M.Zwolak and M.Di Ventra, Appl. Phys. Lett., 2002, 81: 925. doi: 10.1063/1.1496504 138. X. F.Wang and T.Chakraborty, Phys. Rev. B, 2006, 74: 193103. doi: 10.1103/PhysRevB.74.193103 139. A. D.Stone, J. D.Joannopoulos, and D. J.Chadi, Phys. Rev. B, 1981, 24: 5583. doi: 10.1103/PhysRevB.24.5583 140. E.Macia, Phys. Rev. B, 1999, 60: 10032. doi: 10.1103/PhysRevB.60.10032 141. A.Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945. doi: 10.1002/(SICI)1521‐3773(19990401)38:7<945::AID‐ANIE945>3.0.CO;2‐S 142. P.Carpena, P.Bernaola-Galán, P. C.Ivanov, and H. E.Stanley, Nature (London), 2003, 421(6924): 764. doi: 10.1038/nature01288 143. P.Carpena, P.Bernaola-Galán, P. C.Ivanov, and H. E.Stanley, Nature (London), 2002, 418(6901): 955. doi: 10.1038/nature00948 144. S.Roche, D.Bicout, E.Macia, and E.Kats, Phys.Rev. Lett., 2003, 91: 228101. doi: 10.1103/PhysRevLett.91.228101
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.