Itinerant electron model and conductance of DNA

QU Zhen1, KANG Da-wei1, GAO Xu-tuan2, XIE Shi-jie3

PDF(749 KB)
PDF(749 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (3) : 349-364. DOI: 10.1007/s11467-008-0029-8

Itinerant electron model and conductance of DNA

  • QU Zhen1, KANG Da-wei1, GAO Xu-tuan2, XIE Shi-jie3
Author information +
History +

Abstract

DNA (Deoxyribonucleic acid) has recently caught the attention of chemists and physicists. A major reason for this interest is DNA’s potential use in nanoelectronic devices, both as a template for assembling nanocircuits and as an element of such circuits. However, the electronic properties of the DNA molecule remain very controversial. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and bandgap insulators to effective molecular wires and induced superconductors. In this review article, we summarize the wide-ranging experimental and theoretical results of charge transport in DNA. An itinerant electron model is suggested and the effect of the density of itinerant electrons on the conductivity of DNA is studied. Calculations show that a DNA molecule may show conductivity from insulating to metallic, which explains the controversial and profuse electric characteristics of DNA to some extent.

Cite this article

Download citation ▾
QU Zhen, KANG Da-wei, GAO Xu-tuan, XIE Shi-jie. Itinerant electron model and conductance of DNA. Front. Phys., 2008, 3(3): 349‒364 https://doi.org/10.1007/s11467-008-0029-8

References

1. J. M.Warman, M. P.de Haas, and A.Rupprecht, Chem. Phys. Lett., 1996, 249(5–6): 319. doi: 10.1016/0009‐2614(95)01429‐2
2. S.Luryi, J.Xu, and A.Zaslavsky, Future Trends in Microelectronics, USA, New York: John Wiley & Sons Inc., 1999 : 87
3. C.Joachim, J. K.Gimzewski, and A.Aviram, Nature, 2000, 408(6812): 541. doi: 10.1038/35046000
4. J. M.Tour, Acc. Chem. Res., 2000, 33(11): 791. doi: 10.1021/ar0000612
5. A.Aviram and M. A.Ratner, Chem. Phys. Lett., 1974, 29(2): 277. doi: 10.1016/0009‐2614(74)85031‐1
6. A. Aviram and M. A. Ratner (eds.), Molecular ElectronicsScience and Technology: Annals of the New York Academy of Sciences, New York: The New York Academy of Sciences, 1998, Vol. 852
7. A.Aviram, M. A.Ratner, and V.Mujica, Molecular Electronics II: Annalsof the New York Academy of Sciences, New York: The New York Academyof Sciences, 2002, Vol.960
8. C. P.Collier, E. W.Wong, M.Bolohradsky, F. M.Raymo, J. F.Stoddart, P. J.Kuekes, R. S.Williams, and J. R.Heath, Science, 1999, 285: 391. doi: 10.1126/science.285.5426.391
9. C. P.Collier, G.Mattersteig, E. W.Wong, Y.Luo, K.Beverly, J.Sampario, F. M.Raymo, and J. R.Heath, Science, 2001, 289: 1172. doi: 10.1126/science.289.5482.1172
10. E.Braun, Y.Eichen, U.Sivan, and G.Ben-Yoseph, Nature, 1998, 391(6669): 775. doi: 10.1038/35826
11. K.Keren, M.Krueger, R.Gilad, G.Ben-Yoseph, U.Sivan, and E.Braun, Science, 2002, 297: 72. doi: 10.1126/science.1071247
12. R.Rinaldi, A.Biasco, G.Maruccio, V.Arima, P.Visconti, R.Cingolani, P.Facci, F.De Rienzo, R.Di Felice, E.Molinari, M. P.Verbeet, and G. W.Canters, Appl. Phys. Lett., 2003, 82(3): 472. doi: 10.1063/1.1530748
13. R.Rinaldi, E.Branca, R.Cingolani, R.Di Felice, A.Calzolari, E.Molinari, S.Masiero, G.Spada, G.Gottarelli, and A.Garbesi, Annals of the New York Academy of Sciences, 2002, 960: 184
14. Y.Benenson, T.Paz-Elizur, R.Adar, E.Keinan, Z.Livneh, and E.Shapiro, Nature, 2001, 414(6845): 430. doi: 10.1038/35106533
15. S. G.Lemay, J. W.Janssen, M.van den Hout, M.Mooji, M. J.Bronikowski, P. A.Willis, R. E.Smalley, L. P.Kouwenhoven, and C.Dekker, Nature, 2001, 412(6847): 617. doi: 10.1038/35088013
16. W.Liang, M. P.Shores, M.Bockrath, J. R.Long, and H.Park, Nature, 2002, 417(6890): 725. doi: 10.1038/nature00790
17. J. M.Lehn, Angew. Chem. Int. Ed, 1990, 29(11): 1304. doi: 10.1002/anie.199013041
18. C. M.Niemeyer, Angew. Chem. Int. Ed., 1997, 36(6): 585. doi: 10.1002/anie.199705851
19. C. M.Niemeyer, Angew. Chem. Int. Ed., 2001, 40(22): 4128. doi: 10.1002/1521‐3773(20011119)40:22<4128::AID‐ANIE4128>3.0.CO;2‐S
20. T.La Bean, H.Yan, J.Kopatsch, F.Liu, E.Winfree, J. H.Reif, and N. C.Seeman, J. Am. Chem. Soc., 2000, 122(9): 1848. doi: 10.1021/ja993393e
21. N. C.Seeman, Nano Lett., 2001, 1: 22. doi: 10.1021/nl000182v
22. Y.Zhang, R. H.Austin, J.Kraeft, E. C.Cox, and N. P.Ong, Phys. Rev. Lett., 2002, 89: 198102. doi: 10.1103/PhysRevLett.89.198102
23. C.Dekker and M. A.Ratner, Physics World, 2001, 14: 29
24. D. D.Eley and D. I.Spivey, Trans. Faraday. Soc., 1962, 12: 245
25. C. J.Murphy, M. R.Arkin, Y.Jenkins, N. D.Ghatlia, S. H.Bossmann, N. J.Turro, and J. K.Barton, Science, 1993, 262: 1025. doi: 10.1126/science.7802858
26. A. M.Brun and A.Harriman, J. Am. Chem. Soc., 1992, 114(10): 3656. doi: 10.1021/ja00036a013
27. A. M.Brun and A.Harriman, J. Am. Chem. Soc., 1994, 116(23): 10383. doi: 10.1021/ja00102a004
28. A.Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945. doi: 10.1002/(SICI)1521‐3773(19990401)38:7<945::AID‐ANIE945>3.0.CO;2‐S
29. P.Lincoln, E.Tuite, and B.Norden, J. Am. Chem. Soc., 1997, 119(6): 1454. doi: 10.1021/ja9631965
30. B.Giese, Annu. Rev. Biochem., 2002, 71: 51. doi: 10.1146/annurev.biochem.71.083101.134037
31. E. M.Boon, and J. K.Barton, Curr. Opin. Struc.Biol., 2002, 12: 320. doi: 10.1016/S0959‐440X(02)00327‐5
32. P. T.Henderson, D.Jones, G.Hampikian, Y.Kan, and G. B.Schuster, Proc. Natl. Acad. Sci.USA, 1999, 96(15): 8353. doi: 10.1073/pnas.96.15.8353
33. F. D.Lewis, T.Wu, Y.Zhang, R. L.Letsinger, S. R.Green-field, and M. R.Wasielewski, Science, 1997, 277: 673. doi: 10.1126/science.277.5326.673
34. A. A.Voityuk, J.Jortner, M.Bixon, and N.Rosch, Chem. Phys. Lett., 2000, 324(5–6): 430. doi: 10.1016/S0009‐2614(00)00638‐2
35. C.Gómez-Navarro, A.Gil, M.Alvarez, P. J.De Pablo, F.Moreno-Herrero, I.Horcas, R.Fernandez-Sánchez, J.Colchero, J.Gómez Herrero, and A. M.Baró, Nanotechnology, 2002, 13: 314. doi: 10.1088/0957‐4484/13/3/315
36. A.Gil, P. J.De Pablo, J.Colchero, J.Gómez Herrero, and A. M.Baró, Nanotechnology, 2002, 13: 309. doi: 10.1088/0957‐4484/13/3/314
37. C.Gómez-Navarro, F.Moreno-Herrero, P. J.De Pablo, J.Colchero, Gómez Herrero J., and A. M.Baró, Proc. Natl. Acad. Sci.USA, 2002, 99(13): 8484. doi: 10.1073/pnas.122610899
38. M.Bockrath, N.Markovic, A.Shepard, M.Tinkham, L.Gurevich, L. P.Kouwenhoven, M. W.Wu, and L. L.Sohn, Nano Lett., 2002, 2: 187. doi: 10.1021/nl0100724
39. P.Tran, B.Alavi, and G.Gruner, Phys. Rev. Lett., 2000, 85: 1564. doi: 10.1103/PhysRevLett.85.1564
40. H.-W.Fink and C.Schonenberger, Nature, 1999, 398(6726): 407. doi: 10.1038/18855
41. H.-W.Fink, Mol. Life Sci., 2001, 58: 1. doi: 10.1007/PL00000770
42. H.-W.Fink, H.Schmid, E.Ermantraut, and T.Schulz, J. Opt. Soc. Am. A, 1997, 14: 2168. doi: 10.1364/JOSAA.14.002168
43. P. J.De Pablo, F.Moreno-Herrero, J.Colchero, J.Gómez Herrero, P.Herrero, A. M.Baró, P.Ordejón, J. M.Soler, and E.Artacho, Phys. Rev. Lett., 2000, 85: 4992. doi: 10.1103/PhysRevLett.85.4992
44. J. M.Lee, S. K.Ahn, K. S.Kim, Y.Lee, and Y.Roh, Thin Solid Films, 2006, 515: 818. doi: 10.1016/j.tsf.2005.12.185
45. J. S.Lee, L. J. P.Latimer, and R. S.Reid, Biochem. Cell Biol., 1993, 71: 162
46. D.Porath, A.Bezryadin, S.de Vries, and C.Dekker, Nature, 2000, 403(6770): 635. doi: 10.1038/35001029
47. A.Bezryadin and C.Dekker, J. Vac. Sci. Technol.B, 1997, 15(4): 793. doi: 10.1116/1.589411
48. A.Bezryadin, C.Dekker, and G.Schmid, Appl. Phys. Lett., 1997, 71: 1273. doi: 10.1063/1.119871
49. K.-H.Yoo, D. H.Ha, J.-O.Lee, J. W.Park, J.Kim, J. J.Kim, H.-Y.Lee, T.Kawai, and H. Y.Choi, Phys. Rev. Lett., 2001, 87(19): 198102. doi: 10.1103/PhysRevLett.87.198102
50. H.Watanabe, C.Manabe, T.Shigematsu, K.Shimotani, and M.Shimizu, Appl. Phys. Lett., 2001, 79(15): 462. doi: 10.1063/1.1408604
51. L.Cai, H.Tabata, and T.Kawai, Appl. Phys. Lett., 2000, 77(19): 3105. doi: 10.1063/1.1323546
52. T.Kanno, H.Tanaka, N.Miyoshi, and T.Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892. doi: 10.1143/JJAP.39.1892
53. T.Kanno, H.Tanaka, N.Miyoshi, and T.Kawai, Appl. Phys. Lett., 2000, 77: 3848. doi: 10.1063/1.1330565
54. T.Kanno, H.Tanaka, N.Miyoshi, M.Fukuda, and T.Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892. doi: 10.1143/JJAP.39.1892
55. J. S.Hwang, G. S.Lee, K. J.Kong, D. J.Ahn, S. W.Hwang, and D.Ahn, Microelectron. Eng., 2002, 63(1–3): 161. doi: 10.1016/S0167‐9317(02)00641‐X
56. J. S.Hwang, G. S.Lee, D.Ahn, G. S.Lee, D. J.Ahn, and S. W.Hwang, Appl. Phys. Lett., 2002, 81(6):1134. doi: 10.1063/1.1498862
57. Private communication.
58. T.Muir, E.Morales, J.Root, I.Kumar, B.Garcia, C.Vellandi, D.Jenigian, T.Marsh, E.Henderson, and J.Vesenka, J. Vac. Sci. Technol.A, 1998, 16(3): 1172. doi: 10.1116/1.581254
59. Y.Zhang, R. H.Austin, J.Kraeft, E. C.Cox, and N. P.Ong, Phys. Rev. Lett., 2002, 89: 189102
60. K. W.Hipps, Science, 2001, 294: 536. doi: 10.1126/science.1065708
61. X. D.Cui, A.Primak, X.Zarate, J.Tomfohr, O. F.Sankey, A. L.Moore, T. A.Moore, D.Gust, G.Harris, and S. M.Lindsay, Science, 2001, 294: 571. doi: 10.1126/science.1064354
62. D. H.Ha, H.Nham, K.-H.Yoo, H.So, H. Y.Lee, and T.Kawai, Chem. Phys. Lett., 2002, 355(5–6): 405. doi: 10.1016/S0009‐2614(02)00142‐2
63. H.-Y.Lee, H.Tanaka, Y.Otsuka, K.-H.Yoo, J.-O.Lee, and T.Kawai, Appl. Phys. Lett., 2002, 80: 1670. doi: 10.1063/1.1456972
64. T.Kleine-Ostmann, C.Jördens, and K.Baaske, Appl. Phys. Lett., 2006, 88: 102102. doi: 10.1063/1.2182027
65. K. S.Kim, S. K.Ahn, Y.Lee, J. M.Lee, and Y.Roh, J. Korea. Phys. Soc., 2005, 47: S535
66. K. S.Kim, S. K.Ahn, Y.Lee, J. M.Lee, and Y.Roh, Thin Solid Films, 2006, 515: 822. doi: 10.1016/j.tsf.2005.12.187
67. P.Maragakis, R. L.Barnett, E.Kaxiras, M.Elstner, and T.Frauenheim, Phys. Rev. B, 2002, 66: 241104. doi: 10.1103/PhysRevB.66.241104
68. H.Wang, J. P.Lewis, and O. F.Sankey, Phys. Rev. Lett., 2004, 93: 016401. doi: 10.1103/PhysRevLett.93.016401
69. R.Di Felice, A.Calzolari, E.Molinari, and A.Garbesi, Phys. Rev. B, 2001, 65(4): 045104. doi: 10.1103/PhysRevB.65.045104
70. H.Ymada, E. B.Starikov, D.Hennig, and J. F. R.Archilla, Eur. Phys. J. E, 2005, 17: 149. doi: 10.1140/epje/i2004‐10135‐8
71. S.Priyadarshy, S. M.Risser, and D. N.Beratan, J. Biol. Inorg. Chem., 1998, 3(2): 196. doi: 10.1007/s007750050221
72. E. S.Krider and T. J.Meade, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223
73. T. L.Netzel, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223
74. D. N.Beratan, S.Priyadarshy, and S. M.Risser, Chem. Biol., 1997, 4(1): 3. doi: 10.1016/S1074‐5521(97)90230‐1
75. M.Bixon, B.Giese, S.Wessely, T.Langenbacher, M. E.Michel Beyerle, and J.Jortner, Proc. Natl. Acad. Sci. USA, 1999, 96: 11713. doi: 10.1073/pnas.96.21.11713
76. M.Bixon and J.Jortner, J. Phys. Chem. B, 2000, 104: 3906. doi: 10.1021/jp9936493
77. J.Jortner, M.Bixon, A.Voityuk, and N.Rosch, J. Phys. Chem. A, 2002, 106(33): 7599. doi: 10.1021/jp014232b
78. A. A.Voityuk, N.Rosch, M.Bixon, and J.Jortner, J. Phys. Chem. B, 2000, 104: 9740. doi: 10.1021/jp001109w
79. E. C.Grozema, Y. A.Berlin, and L. D. A.Siebbeles, J. Am. Chem. Soc., 2000, 122(51): 10903
80. Y.-J.Ye, R. S.Chen, F.Chen, J.Sun, and J.Ladik, Solid State Commun., 2001, 119(3): 175. doi: 10.1016/S0038‐1098(01)00204‐6
81. G.Brunaud, F.Castet, A.Fritsch, and L.Ducasse, Phys. Chem. Chem. Phys., 2002, 4: 6072. doi: 10.1039/b208655g
82. D.Bicout and E.Kats, Phys. Lett. A, 2002, 300(4–5): 479. doi: 10.1016/S0375‐9601(02)00848‐4
83. Y.Berlin, A. L.Burin, and M. A.Ratner, J. Phys. Chem. A, 2000, 104: 443. doi: 10.1021/jp9933323
84. Y.Berlin, A. L.Burin, and M. A.Ratner, J. Am. Chem. Soc., 2001, 123(2): 260. doi: 10.1021/ja001496n
85. Y.Berlin, A. L.Burin, L. D. A.Siebbeles, and M. A.Ratner, J. Phys. Chem. A, 2001, 105: 5666. doi: 10.1021/jp004436c
86. Y. A.Berlin, A. L.Burin, and M. A.Ratner, Superlattice Microstruct., 2000, 28(241): 241. doi: 10.1006/spmi.2000.0915
87. Y. A.Berlin, A. L.Burin, and M. A.Ratner, Chem. Phys., 2002, 275(1–3): 61. doi: 10.1016/S0301‐0104(01)00536‐5
88. X.Li and Y.Yan, J. Chem. Phys., 2001, 115(9): 4169. doi: 10.1063/1.1392368
89. X.Li, H. Y.Zhang, and Y.Yan, J. Phys. Chem. A, 2001, 105(51): 9563. doi: 10.1021/jp011965n
90. X.Li and Y.Yan, Appl. Phys. Lett., 2001, 79: 2190. doi: 10.1063/1.1407860
91. G.Cuniberti, L.Craco, D.Porath, and C.Dekker, Phys. Rev. B, 2002, 65: 241314. doi: 10.1103/PhysRevB.65.241314
92. Y.Zhu, C. C.Kaun, and H.Guo, Phys. Rev. B., 2004, 69: 245112. doi: 10.1103/PhysRevB.69.245112
93. X. F.Wang and T.Chakraborty, Phys. Rev. Lett., 2006, 97: 106602. doi: 10.1103/PhysRevLett.97.106602
94. B.Giese, J.Amaudrut, A. K.Köhler, M.Spormann, and S.Wessely, Nature, 2001, 412: 318. doi: 10.1038/35085542
95. Z. G.Yu and X.Song, Phys. Rev. Lett., 2001, 86: 6018. doi: 10.1103/PhysRevLett.86.6018
96. J. H.Wei and K. S.Chan, J. Phys.: Condens.Matter, 2007, 19: 286101. doi: 10.1088/0953‐8984/19/28/286101
97. A. V.Malyshev, Phy. Rev. Lett., 2007, 98: 096801. doi: 10.1103/PhysRevLett.98.096801
98. E.Maciá, F.Triozon, and S.Roche, Phys. Rev. B, 2005, 71: 113106. doi: 10.1103/PhysRevB.71.113106
99. J.Yi and B. J.Kim, Phys. Rev. B, 2007, 75: 035111. doi: 10.1103/PhysRevB.75.035111
100. B.Xu and P.Zhang, X.Li, and N.Tao, NanoLett., 2004, 4: 1105. doi: 10.1021/nl0494295
101. W. P.Su and J. R.Schrieffer, Proc. Natl. Acad. Sci.USA, 1980, 77: 5626. doi: 10.1073/pnas.77.10.5626
102. E. M.Conwell, Phys. Rev. B, 1998, 57: R12670. doi: 10.1103/PhysRevB.57.R12670
103. S. V.Rakhmanova and E. M.Conwell, Appl. Phys. Lett., 1999, 75: 1518. doi: 10.1063/1.124741
104. G. M.Silva, Phys. Rev. B, 2000, 61: 10777. doi: 10.1103/PhysRevB.61.10777
105. C.daS.Pinheiro and G. M.e Silva, Phys. Rev. B, 2002, 65: 094304. doi: 10.1103/PhysRevB.65.094304
106. Å.Johansson and S.Stafström, Phys. Rev. Lett., 2001, 86: 3602. doi: 10.1103/PhysRevLett.86.3602
107. Å.Johansson and S.Stafström, Phys. Rev. B, 2003, 68: 035206. doi: 10.1103/PhysRevB.68.035206
108. A. A.Johansson and S.Stafström, Phys. Rev. B, 2004, 69: 235205. doi: 10.1103/PhysRevB.69.235205
109. Yu J. F., Wu C. Q., Sun X., and K.Nasu, Phys.Rev. B, 2004, 70: 064303. doi: 10.1103/PhysRevB.70.064303
110. X. J.Liu, K.Gao, J. Y.Fu, Y.Li, J. H.Wei, and S. J.Xie, Phys. Rev. B, 2006, 74: 172301. doi: 10.1103/PhysRevB.74.172301
111. Y.Li, X. J.Liu, J. Y.Fu, D. S.Liu, S. J.Xie, and L. M.Mei, Phys. Rev. B, 2006, 74: 184303. doi: 10.1103/PhysRevB.74.184303
112. K.Gao, X. J.Liu, D. S.Liu, and S. J.Xie, Phys. Rev. B, 2007, 75: 205412. doi: 10.1103/PhysRevB.75.205412
113. V. D.Lakhno, J. Biol. Phys., 2001, 26(2): 133. doi: 10.1023/A:1005275211233
114. Z.Hermon, S.Caspi, and E.Ben-Jacob, Europhys. Lett., 1998, 43(4): 482. doi: 10.1209/epl/i1998‐00385‐6
115. E. M.Conwell and S. V.Rakhmanova, Proc. Natl. Acad. Sci.USA, 2000, 97: 4556. doi: 10.1073/pnas.050074497
116. S. V.Rakhmanova and E. M.Conwell, J. Phys. Chem. B, 2001, 105: 2056. doi: 10.1021/jp0036285
117. E. M.Conwell and D. M.Basko, Synthetic Metals, 2003, 137: 1381. doi: 10.1016/S0379‐6779(02)01151‐7
118. J. H.Park, H. Y.Choi, and E. M.Conwell, J. Phys. Chem. B, 2004, 108: 19483. doi: 10.1021/jp046968p
119. E. M.Conwell, J. H.Park, and H. Y.Choi, J. Phys. Chem. B, 2005, 109: 9760. doi: 10.1021/jp044485f
120. E. M.Conwell and S. M.Bloch, J. Phys. Chem. B, 2006, 110: 5801. doi: 10.1021/jp0553986
121. D.Ly, Y.Kan, B.Armitage, and G. B.Schuster, J. Am. Chem. Soc., 1996, 118(36): 8747. doi: 10.1021/ja9615785
122. D.Ly, L.Sanii, and G. B.Schuster, J. Am. Chem. Soc., 1999, 121(40): 9400. doi: 10.1021/ja991753s
123. B.Zheng, J.Wu, W. Q.Sun, and C. B.Liu, Chem. Phys. Lett., 2006, 425: 123. doi: 10.1016/j.cplett.2006.05.022
124. D. T.Breslin, J. E.Coury, J. R.Anderson, L.McFail-Isom, Y.Kan, L. D.Williams, L. A.Bottomley, and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(21): 5043. doi: 10.1021/ja963607h
125. S. M.Gasper and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(52): 12762. doi: 10.1021/ja972496z
126. J. H.Wei, L. X.Wang, K. S.Chan, and Y. J.Yan, Phys. Rev. B, 2005, 72: 064304. doi: 10.1103/PhysRevB.72.064304
127. G. B.Schuster, Acc. Chem. Res., 2000, 33(4): 253. doi: 10.1021/ar980059z
128. B.Armitage, D.Ly, T.Koch, H.Frydenlund, H.Orum, H. G.Baand, and G. B.Schuster, Proc. Natl. Acad. Sci. USA, 1997, 94: 12320. doi: 10.1073/pnas.94.23.12320
129. D.Hennig, J. F. R.Archilla, and J.Agarwal, Physica D, 2003, 180: 256
130. D.Hennig, E. B.Starikov, J. F. R.Archilla, and F.Palmero, J. Bio. Phys., 2004, 30: 227. doi: 10.1023/B:JOBP.0000046721.92623.a9
131. D.Hennig and J. F. R.Archilla, Physica A, 2004, 331: 579. doi: 10.1016/j.physa.2003.09.053
132. R.Bruinsma, G.Gruner, M. R. D.Orsogna, and J.Rudnick, Phys. Rev. Lett., 2000 : 85
133. R. N.Barnett, C. L.Cleveland, A.Joy, U.Landman, and G. B.Schuste, Science, 2001, 294: 567. doi: 10.1126/science.1062864
134. M.Hjort and S.Stafstrom, Phys. Rev. Lett., 2001, 87: 228101. doi: 10.1103/PhysRevLett.87.228101
135. C. R.Cantor, P. R.Schimmel, Biophysical Chemistry,Part 3: The Behavior of Biological Macromolecules, Chapter 19, New York: W. H. Freeman and Company, 1980 : 1207
136. F. C.Grozema, L. D. A.Siebbeles, Y. A.Berlin, and M. A.Ratner, Chem. Phys. Chem., 2002, 3: 536
137. M.Zwolak and M.Di Ventra, Appl. Phys. Lett., 2002, 81: 925. doi: 10.1063/1.1496504
138. X. F.Wang and T.Chakraborty, Phys. Rev. B, 2006, 74: 193103. doi: 10.1103/PhysRevB.74.193103
139. A. D.Stone, J. D.Joannopoulos, and D. J.Chadi, Phys. Rev. B, 1981, 24: 5583. doi: 10.1103/PhysRevB.24.5583
140. E.Macia, Phys. Rev. B, 1999, 60: 10032. doi: 10.1103/PhysRevB.60.10032
141. A.Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945. doi: 10.1002/(SICI)1521‐3773(19990401)38:7<945::AID‐ANIE945>3.0.CO;2‐S
142. P.Carpena, P.Bernaola-Galán, P. C.Ivanov, and H. E.Stanley, Nature (London), 2003, 421(6924): 764. doi: 10.1038/nature01288
143. P.Carpena, P.Bernaola-Galán, P. C.Ivanov, and H. E.Stanley, Nature (London), 2002, 418(6901): 955. doi: 10.1038/nature00948
144. S.Roche, D.Bicout, E.Macia, and E.Kats, Phys.Rev. Lett., 2003, 91: 228101. doi: 10.1103/PhysRevLett.91.228101
AI Summary AI Mindmap
PDF(749 KB)

Accesses

Citations

Detail

Sections
Recommended

/