Recent advances on thermoelectric materials

ZHENG Jin-cheng

PDF(1774 KB)
PDF(1774 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (3) : 269-279. DOI: 10.1007/s11467-008-0028-9

Recent advances on thermoelectric materials

  • ZHENG Jin-cheng
Author information +
History +

Abstract

By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.

Cite this article

Download citation ▾
ZHENG Jin-cheng. Recent advances on thermoelectric materials. Front. Phys., 2008, 3(3): 269‒279 https://doi.org/10.1007/s11467-008-0028-9

References

1. Basic Research Needsfor Solar Energy Utilization. , Report of the BasicEnergy Sciences Workshop on Solar Energy Utilization, USA: DOE, April 18–21, 2005 2. C.Wood, Rep. Prog. Phys., 1988, 51: 459. doi: 10.1088/0034‐4885/51/4/001 3. F. J.DiSalvo, Science, 1999, 285: 703. doi: 10.1126/science.285.5428.703 4. G. S.Nolas, D. T.Morelli, and T. M.Tritt, Annu. Rev. Mater. Sci., 1999, 29: 89. doi: 10.1146/annurev.matsci.29.1.89 5. S. B.Riffat and X. L.Ma, Appl. Thermal Engineering, 2003, 23: 913. doi: 10.1016/S1359‐4311(03)00012‐7 6. S. B.Riffat and X. L.Ma, Int. J. Energy Res., 2004, 28:753. doi: 10.1002/er.991 7. M. S.Dresselhaus, G.Chen, M. Y.Tang, R. G.Yang, H.Lee, D. Z.Wang, Z. F.Ren, J.-P.Fleurial, and P.Gogna, Adv. Mater., 2007, 19: 1043. doi: 10.1002/adma.200600527 8. G. J.Snyder and E. S.Toberer, Nature Materials, 2008, 7: 105. doi: 10.1038/nmat2090 9. chem.ch.huji.ac.il/history/seebeck, accessed Jan. 30, 2008 10. thermoelectrics.caltech.edu/history_page,accessed Jan. 30, 2008 11. H. J.Goldsmid, Electronic Refrigeration, London: Pion, 1986 : 10 12. G. D.Mahan, and J. O.Sofo, Proc. Natl. Acad. Sci.USA, 1996, 93: 7436. doi: 10.1073/pnas.93.15.7436 13. J.Yang, Designing Advanced Thermoelectric Materials for Automotive Applications,2004 DOE/EPRI High Efficiency Thermoelectric Workshop, CA, San Diego, Feb. 19, 2004 14. F. R.Stabler, Mater. Res. Soc. Symp. Proc., 2006, Vol. 886, # 0886-F01-04.1 15. Data obtained from database of “ISI Web of Knowledge”with search option of “thermoelectric or thermoelectrics”in Title only 16. G. K. H.Madsen, J. Am. Chem. Soc., 2006, 128: 12140. doi: 10.1021/ja062526a 17. A. F.Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Information, London: Infosearch, 1957 18. T. J.Scheidemantel, C.Ambrosch-Draxl, T.Thonhauser, J. V.Badding, and J. O.Sofo, Phys. Rev. B, 2003, 68: 125210. doi: 10.1103/PhysRevB.68.125210 19. T.Thonhauser, T. J.Scheidemantel, J. O.Sofo, J. V.Badding, and G. D.Mahan, Phys. Rev. B, 2003, 68: 085201. doi: 10.1103/PhysRevB.68.085201 20. P.Blaha, K.Schwarz, G. K. H.Madsen, D.Kvasnicka, and J.Luitz, WIEN2k, An AugmentedPlane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria: Karlheinz Schwarz, Techn. Universit¨at Wien, 2001, ISBN 3-9501031-1-2 21. P.Hohenberg and W.Kohn, Phys. Rev., 1964, 136: B864. doi: 10.1103/PhysRev.136.B864 22. W.Kohn and L. J.Sham, Phys. Rev., 1965, 140: A1133. doi: 10.1103/PhysRev.140.A1133 23. B. R.Nag, Electron Transport in Compound Semiconductors, New York: Springer, 1980 : 171 24. T.Thonhauser, T. J.Scheidemantel, and J. O.Sofo, Appl. Phys. Lett., 2004, 85: 588. doi: 10.1063/1.1775286 25. G. K. H.Madsen and D. J.Singh, Comput. Phys. Commun., 2006, 175: 67. doi: 10.1016/j.cpc.2006.03.007 26. Y.Wang, X.Chen, T.Cui, Y.Niu, Y.Wang, M.Wang, Y.Ma, and G.Zou, Phys. Rev. B, 2007, 76: 155127. doi: 10.1103/PhysRevB.76.155127 27. R. R. Heikes and R. W. Ure (eds.), Thermoelectricity:Science and Energy, New York: Interscience, 1961 28. G.Beni, Phys. Rev. B, 1974, 10: 2186. doi: 10.1103/PhysRevB.10.2186 29. P. M.Chaikin and G.Beni, Phys. Rev. B, 1976, 13: 647. doi: 10.1103/PhysRevB.13.647 30. R.Kubo, J. Phys. Soc. Jpn., 1957, 12: 1203. doi: 10.1143/JPSJ.12.1203 31. A.Oguri and S.Maekawa, Phys. Rev. B, 1990, 41: 6977. doi: 10.1103/PhysRevB.41.6977 32. W.Koshibae, K.Tsutsui, and S.Maekawa, Phys. Rev. B, 2000, 62: 6869. doi: 10.1103/PhysRevB.62.6869 33. M. M.Zemljic and P.Prelovsek, Phys. Rev. B, 2005, 71: 085110. doi: 10.1103/PhysRevB.71.085110 34. S.Mukerjee, Phys. Rev. B, 2005, 72: 195109. doi: 10.1103/PhysRevB.72.195109 35. W.Koshibae and S.Maekawa, Phys. Rev. Lett., 2001, 87: 236603. doi: 10.1103/PhysRevLett.87.236603 36. M. R.Peterson, S.Mukerjee, B. S.Shastry, and J. O.Haerter, Phys. Rev. B, 2007, 76: 12511 37. J.Callaway, Phys. Rev., 1959, 113: 1046. doi: 10.1103/PhysRev.113.1046 38. J.Callaway and H. C.Von Baeyer, Phys. Rev., 1960, 120: 1149. doi: 10.1103/PhysRev.120.1149 39. J. M.Ziman, Phil. Mag., 1956, 1: 191. doi: 10.1080/14786435608238092 40. J. M.Ziman, Phil. Mag., 1957, 2: 292. doi: 10.1080/14786435708243818 41. E. F.Steigmeier and B.Abeles, Phys. Rev., 1964, 136: A1149. doi: 10.1103/PhysRev.136.A1149 42. W. P.Mason and T. B.Bateman, Phys. Rev. Lett., 1963, 10: 151. doi: 10.1103/PhysRevLett.10.151 43. J.Hejtmánek, M.Veverka, K.Knížek, H.Fujishiro, S.Hebert, Y.Klein, A.Maignan, C.Bellouard, and B.Lenoir, Mater. Res. Soc. Symp.Proc., 2006, Vol. 886, # 0886-F01-07.1 44. P.Oleynikov, L.Wu, J. C.Zheng, V.V.Volkov, R.F.Klie, Y.Zhu, H.Inada, K.Nakamura, and R.Twestern, Structural analysis of layered Ca3Co4O9 thermoelectrics using aberrationcorrected STEM and EELS, Advanced Electron Microscopy in MaterialsPhysics Workshop, Nov. 7–8, 2007, Brookhaven National Laboratory, USA 45. P.Oleynikov, J.Hanson, J. C.Zheng, L.Wu, V.Volkov, Q.Jie, Q.Li, and Y.Zhu, Electron Microscopy Study of LayeredThermoelectric Cobalt Oxide [Ca2CoO3]0.62CoO2, Workshop of “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007 46. L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 12727 47. L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 16631 48. G.Chen, Phys. Rev. B, 1998, 57: 14958. doi: 10.1103/PhysRevB.57.14958 49. A.Balandin and K. L.Wang, Phys. Rev. B, 1998, 58: 1544. doi: 10.1103/PhysRevB.58.1544 50. S. G.Walkauskas, D. A.Broido, K.Kempa, and T. L.Reinecke, J. Appl. Phys., 1999, 85: 2579. doi: 10.1063/1.369576 51. R.Venkatasubramanian, Phys. Rev. B, 2000, 61: 3091. doi: 10.1103/PhysRevB.61.3091 52. J.Zou and A.Balandin, J. Appl. Phys., 2001, 89: 2932. doi: 10.1063/1.1345515 53. R.Yang, G.Chen, and M. S.Dresselhaus, Nano Lett., 2005, 5: 1111. doi: 10.1021/nl0506498 54. M.-J.Huang, M.-Y.Chong, and T.-M.Chang, J. Appl. Phys., 2006, 99: 114318. doi: 10.1063/1.2203721 55. A.Minnich and G.Chen, Appl. Phys. Lett., 2007, 91: 073105. doi: 10.1063/1.2771040 56. J.Wang and J.-S.Wang, J. Phys.: Condens.Matter, 2007, 19: 236211. doi: 10.1088/0953‐8984/19/23/236211 57. A.I.Hochbaum1, R.Chen, R. D.Delgado, W.Liang, E. C.Garnett, M.Najarian, A.Majumdar, and P.Yang, Nature, 2008, 451: 163. doi: 10.1038/nature06381 58. H. J.Goldsmid and G. S.Nolas, 20th InternationalConference on Themoelectrics, 2001 59. R.Venkatasubramanian, E.Siivola, T.Colpitts, and B.O'Quinn, Nature, 2001, 413: 597. doi: 10.1038/35098012 60. G. A.Slack and V.Tsoukala, J. Appl. Phys., 1994, 76: 1665. doi: 10.1063/1.357750 61. B. C.Sales, D.Mandrus, and R. K.Williams, Science, 1996, 272: 1325. doi: 10.1126/science.272.5266.1325 62. G. S.Nolas, J. L.Cohn, G.Slack, and S. B.Schujman, Appl. Phys. Lett., 1998, 73: 178. doi: 10.1063/1.121747 63. J. L.Cohn, G. S.Nolas, V.Fessatidis, T. H.Metcalf, and G. A.Slack, Phys. Rev. Lett., 1999, 82: 779. doi: 10.1103/PhysRevLett.82.779 64. J. F.Meng, N. V.Chandra Shekar, J. V.Badding, and G. S.Nolas, J. Appl. Phys., 2001, 89: 1730. doi: 10.1063/1.1334366 65. A. M.Guloy, R.Ramlau, Z.Tang, W.Schnelle, M.Baitinger, and Y.Grin, Nature, 2006, 443: 320. doi: 10.1038/nature05145 66. C.Uher, J.Yang, S.Hu, D. T.Morelli, and G. P.Meisner, Phys. Rev. B, 1999, 59: 8615. doi: 10.1103/PhysRevB.59.8615 67. K. F.Hsu, S.Loo, F.Guo, W.Chen, J. S.Dyck, C.Uher, T.Hogan, E. K.Polychroniadis, and M. G.Kanatzidis, Science, 2004, 303: 816. doi: 10.1126/science.1092963 68. Q.Jie, J.Zhou, L.Wu, J. C.Zheng, Y.Zhu, Q.Li, and J.Yang, Impact of NanoscaleSubstructures on the Thermoelectric Properties of AgPbmSbTe2+m, 2007 MRS Fall Meeting, Boston (U3.8) 69. L.Wu, J. C.Zheng, Q.Jie, J.Zhou, Q.Li, Y.Zhu, and J.Yang, Measurement of ChargeDistribution in Thermoelectric AgPbmSbTe2+m by Quantitative Electron Diffraction, Workshopof “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007 70. Y. Y.Wang, N. S.Rogado, R. J.Cava, and N. P.Ong, Nature, 2003, 423: 425. doi: 10.1038/nature01639 71. H.Ohta, S.Kim, Y.Mune, T.Mizoguchi, K.Nomura, S.Ohta, T.Nomura, Y.Nkanishi, Y.Ikuhara, M.Hirano, H.Hosono, and K.Koumoto, Nature Materials, 2007, 6: 129. doi: 10.1038/nmat1821 72. W.Kim, J.Zide, A.Gossard, D.Klenov, S.Stemmer, A.Shakouri, and A.Majumdar, Phys. Rev. Lett., 2006, 96: 045901. doi: 10.1103/PhysRevLett.96.045901 73. A. I.Hochbaum, R.Chen, R. D.Delgado, W.Liang, E. C.Garnett, M.Najarian, A.Majumdar, and P.Yang, Nature, 2008, 451: 163. doi: 10.1038/nature06381 74. A. I.Boukai, Nature, 2008, 451: 168. doi: 10.1038/nature06458 75. P.Reddy, Science, 2007, 315: 1568. doi: 10.1126/science.1137149 76. G. A.Slack, In: CRC handbook of Thermoelectrics, edited by D. M. Rowe, Boca Raton: CRC Press, 1995 : 407
AI Summary AI Mindmap
PDF(1774 KB)

Accesses

Citations

Detail

Sections
Recommended

/