Department of Physics, Xiamen University; Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory
Show less
History+
Published
05 Sep 2008
Issue Date
05 Sep 2008
Abstract
By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.
This is a preview of subscription content, contact us for subscripton.
References
1. Basic Research Needsfor Solar Energy Utilization. , Report of the BasicEnergy Sciences Workshop on Solar Energy Utilization, USA: DOE, April 18–21, 2005
2. C.Wood, Rep. Prog. Phys., 1988, 51: 459. doi: 10.1088/0034‐4885/51/4/001
3. F. J.DiSalvo, Science, 1999, 285: 703. doi: 10.1126/science.285.5428.703
4. G. S.Nolas, D. T.Morelli, and T. M.Tritt, Annu. Rev. Mater. Sci., 1999, 29: 89. doi: 10.1146/annurev.matsci.29.1.89
5. S. B.Riffat and X. L.Ma, Appl. Thermal Engineering, 2003, 23: 913. doi: 10.1016/S1359‐4311(03)00012‐7
6. S. B.Riffat and X. L.Ma, Int. J. Energy Res., 2004, 28:753. doi: 10.1002/er.991
7. M. S.Dresselhaus, G.Chen, M. Y.Tang, R. G.Yang, H.Lee, D. Z.Wang, Z. F.Ren, J.-P.Fleurial, and P.Gogna, Adv. Mater., 2007, 19: 1043. doi: 10.1002/adma.200600527
8. G. J.Snyder and E. S.Toberer, Nature Materials, 2008, 7: 105. doi: 10.1038/nmat2090
9. chem.ch.huji.ac.il/history/seebeck, accessed Jan. 30, 2008
10. thermoelectrics.caltech.edu/history_page,accessed Jan. 30, 2008
11. H. J.Goldsmid, Electronic Refrigeration, London: Pion, 1986 : 10
12. G. D.Mahan, and J. O.Sofo, Proc. Natl. Acad. Sci.USA, 1996, 93: 7436. doi: 10.1073/pnas.93.15.7436
13. J.Yang, Designing Advanced Thermoelectric Materials for Automotive Applications,2004 DOE/EPRI High Efficiency Thermoelectric Workshop, CA, San Diego, Feb. 19, 2004
14. F. R.Stabler, Mater. Res. Soc. Symp. Proc., 2006, Vol. 886, # 0886-F01-04.1
15. Data obtained from database of “ISI Web of Knowledge”with search option of “thermoelectric or thermoelectrics”in Title only
16. G. K. H.Madsen, J. Am. Chem. Soc., 2006, 128: 12140. doi: 10.1021/ja062526a
17. A. F.Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Information, London: Infosearch, 1957
18. T. J.Scheidemantel, C.Ambrosch-Draxl, T.Thonhauser, J. V.Badding, and J. O.Sofo, Phys. Rev. B, 2003, 68: 125210. doi: 10.1103/PhysRevB.68.125210
19. T.Thonhauser, T. J.Scheidemantel, J. O.Sofo, J. V.Badding, and G. D.Mahan, Phys. Rev. B, 2003, 68: 085201. doi: 10.1103/PhysRevB.68.085201
20. P.Blaha, K.Schwarz, G. K. H.Madsen, D.Kvasnicka, and J.Luitz, WIEN2k, An AugmentedPlane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria: Karlheinz Schwarz, Techn. Universit¨at Wien, 2001, ISBN 3-9501031-1-2
21. P.Hohenberg and W.Kohn, Phys. Rev., 1964, 136: B864. doi: 10.1103/PhysRev.136.B864
22. W.Kohn and L. J.Sham, Phys. Rev., 1965, 140: A1133. doi: 10.1103/PhysRev.140.A1133
23. B. R.Nag, Electron Transport in Compound Semiconductors, New York: Springer, 1980 : 171
24. T.Thonhauser, T. J.Scheidemantel, and J. O.Sofo, Appl. Phys. Lett., 2004, 85: 588. doi: 10.1063/1.1775286
25. G. K. H.Madsen and D. J.Singh, Comput. Phys. Commun., 2006, 175: 67. doi: 10.1016/j.cpc.2006.03.007
26. Y.Wang, X.Chen, T.Cui, Y.Niu, Y.Wang, M.Wang, Y.Ma, and G.Zou, Phys. Rev. B, 2007, 76: 155127. doi: 10.1103/PhysRevB.76.155127
27. R. R. Heikes and R. W. Ure (eds.), Thermoelectricity:Science and Energy, New York: Interscience, 1961
28. G.Beni, Phys. Rev. B, 1974, 10: 2186. doi: 10.1103/PhysRevB.10.2186
29. P. M.Chaikin and G.Beni, Phys. Rev. B, 1976, 13: 647. doi: 10.1103/PhysRevB.13.647
30. R.Kubo, J. Phys. Soc. Jpn., 1957, 12: 1203. doi: 10.1143/JPSJ.12.1203
31. A.Oguri and S.Maekawa, Phys. Rev. B, 1990, 41: 6977. doi: 10.1103/PhysRevB.41.6977
32. W.Koshibae, K.Tsutsui, and S.Maekawa, Phys. Rev. B, 2000, 62: 6869. doi: 10.1103/PhysRevB.62.6869
33. M. M.Zemljic and P.Prelovsek, Phys. Rev. B, 2005, 71: 085110. doi: 10.1103/PhysRevB.71.085110
34. S.Mukerjee, Phys. Rev. B, 2005, 72: 195109. doi: 10.1103/PhysRevB.72.195109
35. W.Koshibae and S.Maekawa, Phys. Rev. Lett., 2001, 87: 236603. doi: 10.1103/PhysRevLett.87.236603
36. M. R.Peterson, S.Mukerjee, B. S.Shastry, and J. O.Haerter, Phys. Rev. B, 2007, 76: 12511
37. J.Callaway, Phys. Rev., 1959, 113: 1046. doi: 10.1103/PhysRev.113.1046
38. J.Callaway and H. C.Von Baeyer, Phys. Rev., 1960, 120: 1149. doi: 10.1103/PhysRev.120.1149
39. J. M.Ziman, Phil. Mag., 1956, 1: 191. doi: 10.1080/14786435608238092
40. J. M.Ziman, Phil. Mag., 1957, 2: 292. doi: 10.1080/14786435708243818
41. E. F.Steigmeier and B.Abeles, Phys. Rev., 1964, 136: A1149. doi: 10.1103/PhysRev.136.A1149
42. W. P.Mason and T. B.Bateman, Phys. Rev. Lett., 1963, 10: 151. doi: 10.1103/PhysRevLett.10.151
43. J.Hejtmánek, M.Veverka, K.Knížek, H.Fujishiro, S.Hebert, Y.Klein, A.Maignan, C.Bellouard, and B.Lenoir, Mater. Res. Soc. Symp.Proc., 2006, Vol. 886, # 0886-F01-07.1
44. P.Oleynikov, L.Wu, J. C.Zheng, V.V.Volkov, R.F.Klie, Y.Zhu, H.Inada, K.Nakamura, and R.Twestern, Structural analysis of layered Ca3Co4O9 thermoelectrics using aberrationcorrected STEM and EELS, Advanced Electron Microscopy in MaterialsPhysics Workshop, Nov. 7–8, 2007, Brookhaven National Laboratory, USA
45. P.Oleynikov, J.Hanson, J. C.Zheng, L.Wu, V.Volkov, Q.Jie, Q.Li, and Y.Zhu, Electron Microscopy Study of LayeredThermoelectric Cobalt Oxide [Ca2CoO3]0.62CoO2, Workshop of “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007
46. L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 12727
47. L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 16631
48. G.Chen, Phys. Rev. B, 1998, 57: 14958. doi: 10.1103/PhysRevB.57.14958
49. A.Balandin and K. L.Wang, Phys. Rev. B, 1998, 58: 1544. doi: 10.1103/PhysRevB.58.1544
50. S. G.Walkauskas, D. A.Broido, K.Kempa, and T. L.Reinecke, J. Appl. Phys., 1999, 85: 2579. doi: 10.1063/1.369576
51. R.Venkatasubramanian, Phys. Rev. B, 2000, 61: 3091. doi: 10.1103/PhysRevB.61.3091
52. J.Zou and A.Balandin, J. Appl. Phys., 2001, 89: 2932. doi: 10.1063/1.1345515
53. R.Yang, G.Chen, and M. S.Dresselhaus, Nano Lett., 2005, 5: 1111. doi: 10.1021/nl0506498
54. M.-J.Huang, M.-Y.Chong, and T.-M.Chang, J. Appl. Phys., 2006, 99: 114318. doi: 10.1063/1.2203721
55. A.Minnich and G.Chen, Appl. Phys. Lett., 2007, 91: 073105. doi: 10.1063/1.2771040
56. J.Wang and J.-S.Wang, J. Phys.: Condens.Matter, 2007, 19: 236211. doi: 10.1088/0953‐8984/19/23/236211
57. A.I.Hochbaum1, R.Chen, R. D.Delgado, W.Liang, E. C.Garnett, M.Najarian, A.Majumdar, and P.Yang, Nature, 2008, 451: 163. doi: 10.1038/nature06381
58. H. J.Goldsmid and G. S.Nolas, 20th InternationalConference on Themoelectrics, 2001
59. R.Venkatasubramanian, E.Siivola, T.Colpitts, and B.O'Quinn, Nature, 2001, 413: 597. doi: 10.1038/35098012
60. G. A.Slack and V.Tsoukala, J. Appl. Phys., 1994, 76: 1665. doi: 10.1063/1.357750
61. B. C.Sales, D.Mandrus, and R. K.Williams, Science, 1996, 272: 1325. doi: 10.1126/science.272.5266.1325
62. G. S.Nolas, J. L.Cohn, G.Slack, and S. B.Schujman, Appl. Phys. Lett., 1998, 73: 178. doi: 10.1063/1.121747
63. J. L.Cohn, G. S.Nolas, V.Fessatidis, T. H.Metcalf, and G. A.Slack, Phys. Rev. Lett., 1999, 82: 779. doi: 10.1103/PhysRevLett.82.779
64. J. F.Meng, N. V.Chandra Shekar, J. V.Badding, and G. S.Nolas, J. Appl. Phys., 2001, 89: 1730. doi: 10.1063/1.1334366
65. A. M.Guloy, R.Ramlau, Z.Tang, W.Schnelle, M.Baitinger, and Y.Grin, Nature, 2006, 443: 320. doi: 10.1038/nature05145
66. C.Uher, J.Yang, S.Hu, D. T.Morelli, and G. P.Meisner, Phys. Rev. B, 1999, 59: 8615. doi: 10.1103/PhysRevB.59.8615
67. K. F.Hsu, S.Loo, F.Guo, W.Chen, J. S.Dyck, C.Uher, T.Hogan, E. K.Polychroniadis, and M. G.Kanatzidis, Science, 2004, 303: 816. doi: 10.1126/science.1092963
68. Q.Jie, J.Zhou, L.Wu, J. C.Zheng, Y.Zhu, Q.Li, and J.Yang, Impact of NanoscaleSubstructures on the Thermoelectric Properties of AgPbmSbTe2+m, 2007 MRS Fall Meeting, Boston (U3.8)
69. L.Wu, J. C.Zheng, Q.Jie, J.Zhou, Q.Li, Y.Zhu, and J.Yang, Measurement of ChargeDistribution in Thermoelectric AgPbmSbTe2+m by Quantitative Electron Diffraction, Workshopof “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007
70. Y. Y.Wang, N. S.Rogado, R. J.Cava, and N. P.Ong, Nature, 2003, 423: 425. doi: 10.1038/nature01639
71. H.Ohta, S.Kim, Y.Mune, T.Mizoguchi, K.Nomura, S.Ohta, T.Nomura, Y.Nkanishi, Y.Ikuhara, M.Hirano, H.Hosono, and K.Koumoto, Nature Materials, 2007, 6: 129. doi: 10.1038/nmat1821
72. W.Kim, J.Zide, A.Gossard, D.Klenov, S.Stemmer, A.Shakouri, and A.Majumdar, Phys. Rev. Lett., 2006, 96: 045901. doi: 10.1103/PhysRevLett.96.045901
73. A. I.Hochbaum, R.Chen, R. D.Delgado, W.Liang, E. C.Garnett, M.Najarian, A.Majumdar, and P.Yang, Nature, 2008, 451: 163. doi: 10.1038/nature06381
74. A. I.Boukai, Nature, 2008, 451: 168. doi: 10.1038/nature06458
75. P.Reddy, Science, 2007, 315: 1568. doi: 10.1126/science.1137149
76. G. A.Slack, In: CRC handbook of Thermoelectrics, edited by D. M. Rowe, Boca Raton: CRC Press, 1995 : 407
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.