Concurrence vectors for entanglement of high-dimensional systems

LI You-quan, ZHU Guo-qiang

PDF(590 KB)
PDF(590 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (3) : 250-257. DOI: 10.1007/s11467-008-0022-2

Concurrence vectors for entanglement of high-dimensional systems

  • LI You-quan, ZHU Guo-qiang
Author information +
History +

Abstract

The concurrence vectors are proposed by employing the fundamental representation of An Lie algebra, which provides a clear criterion to evaluate the entanglement of bipartite systems of arbitrary dimension. Accordingly, a state is separable if the norm of its concurrence vector vanishes. The state vectors related to SU(3) states and SO(3) states are discussed in detail. The sign situation of nonzero components of concurrence vectors of entangled bases presents a simple criterion to judge whether the whole Hilbert subspace spanned by those bases is entangled, or there exists an entanglement edge. This is illustrated in terms of the concurrence surfaces of several concrete examples.

Cite this article

Download citation ▾
LI You-quan, ZHU Guo-qiang. Concurrence vectors for entanglement of high-dimensional systems. Front. Phys., 2008, 3(3): 250‒257 https://doi.org/10.1007/s11467-008-0022-2

References

1. C. H.Bennett and D. P.Divincenzo, Nature, 2000, 404: 247. doi: 10.1038/35005001
2. M. A.Nielsen and I. L.Chuang, Quantum Computationand Quantum Communication, Cambridge: Cambridge University Press, 2000
3. A. A.Zhukov, G. A.Maslennikov, and M. V.Chekhova, JETP Lett., 2002, 76(10): 596; arXiv: quant-ph/0305113. doi: 10.1134/1.1541042
4. R. T.Thew, A.Acin, H.Zbinden, and N.Gisin, arXiv: quant-ph/0307122
5. R.Das, A.Mitra, V.Kumar and A.Kumar, arXiv: quantph/0307240
6. A. B.Klimov, R.Guzman, J. C.Retamal, and S.Saavedra, Phys. Rev. A, 2003, 67: 062313. doi: 10.1103/PhysRevA.67.062313
7. D.Bruss and C.Macchiavello, Phys. Rev. Lett., 2002, 88: 127901. doi: 10.1103/PhysRevLett.88.127901
8. D.Kaszlikowski, P.Gnacinski, M.Zukowski, W.Miklaszewski, and A.Zeilinger, Phys. Rev. Lett., 2000, 85: 4418. doi: 10.1103/PhysRevLett.85.4418
9. J. L.Chen, D.Kaszlikowski, L. C.Kwek, M.Zukowski, and C. H.Oh, arXiv: quant-ph/0103099
10. A.Peres, Phys. Rev. Lett., 1996, 77: 1413. doi: 10.1103/PhysRevLett.77.1413
11. M.Horodecki, P.Horodecki, and R.Horodecki, Phys. Lett. A, 1996, 223: 1. doi: 10.1016/S0375‐9601(96)00706‐2
12. P.Horodecki, Phys. Lett. A, 1997, 232: 333. doi: 10.1016/S0375‐9601(97)00416‐7
13. P.Rungta, V.Bužek, C. M.Caves, M.Hillery, and G. J.Milburn, Phys. Rev. A, 2001, 64(4): 042315. doi: 10.1103/PhysRevA.64.042315
14. P.Badziag and P.Deuar, J. Mod. Opt., 2002, 49: 1289. doi: 10.1080/09500340210121589
15. S.Hill and W. K.Wootters, Phys. Rev. Lett., 1997, 78: 5022. doi: 10.1103/PhysRevLett.78.5022
16. W. K.Wootters, Phys. Rev. Lett., 1998, 80: 2245. doi: 10.1103/PhysRevLett.80.2245
17. C. H.Bennett, G.Brassard, C.Cr peau, R.Jozsa, A.Peres, and W. K.Wootters, Phys. Rev. Lett., 1993, 70: 1895. doi: 10.1103/PhysRevLett.70.1895
18. R. A.Horn and C. R.Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985
19. S. L.Braunstein, C. M.Caves, R.Jozsa, N.Linden, S.Popescu, and R.Schack, Phys. Rev. Lett., 1999, 83: 1054. doi: 10.1103/PhysRevLett.83.1054
20. G.Vidal and R.Tarrach, Phys. Rev. A, 1999, 59: 141. doi: 10.1103/PhysRevA.59.141
21. C. M.Caves and G. J.Milburn, Opt. Commun., 2000, 179: 439. doi: 10.1016/S0030‐4018(99)00693‐8
22. X.Wang and P.Zanardi, Phys. Rev. A, 2002, 66: 044303. doi: 10.1103/PhysRevA.66.044303
23. P.Zanardi and M.Rasetti, Phys. Lett. A, 1999, 264: 94. doi: 10.1016/S0375‐9601(99)00803‐8
AI Summary AI Mindmap
PDF(590 KB)

Accesses

Citations

Detail

Sections
Recommended

/