Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH

LIU Yu-fang, ZHAI Hong-sheng, GAO Ya-li

PDF(1265 KB)
PDF(1265 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (2) : 153-158. DOI: 10.1007/s11467-008-0021-3

Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH

  • LIU Yu-fang, ZHAI Hong-sheng, GAO Ya-li
Author information +
History +

Abstract

The product angular momentum polarization of the reaction of H+NH is calculated via the quasiclassical trajectory method (QCT) based on the extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES) at a collision energy of 5.1 kcal/mol. The calculated results of the vector correlations are denoted by using the angular distribution functions. The polarization-dependent differential cross sections (PDDCSs) demonstrate that the rotational angular momentum of the product H2 is aligned and oriented along the direction perpendicular to the scattering plane. Vector correlation shows that the angular momentum of the product H2 is aligned in the plane perpendicular to the velocity vector. It suggests that the reaction proceeds preferentially when the reactant velocity vector lies in a plane containing all three atoms. The orientation and alignment of the product angular momentum affects the scattering direction of the product molecules. The polarization-dependent differential cross sections (PDD-CSs) reveal that scattering is predominantly in the backward hemisphere.

Cite this article

Download citation ▾
LIU Yu-fang, ZHAI Hong-sheng, GAO Ya-li. Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH. Front. Phys., 2008, 3(2): 153‒158 https://doi.org/10.1007/s11467-008-0021-3

References

1. Dove J E Nip S W Can. J. Chem. 1979 57689. doi: 10.1139/v79‐112
2. Morley C 18th Symp. Int. Combust.Pittsburgh,PAThe Combustion Institute 1981 1823
3. Xu Z F Fang D C Fu X Y J. Phys. Chem. 1997 1014432
4. Xu L J Yan J M FA K Chin. Sci. Bul. 1999 4411
5. Zhang S W Truong T N J. Chem. Phys. 2000 1136149. doi: 10.1063/1.1308544
6. Pascual R Z Schatz G C Lendvay G Troya D J. Phys.Chem. A 2002 1064125. doi: 10.1021/jp0133079
7. Adam L Hack W J Zhu H Qu Z W Schinkea R J. Chem. Phys. 2005 122114301. doi: 10.1063/1.1862615
8. Basevich Ya Vedeneev V I Khim. Fiz. 1988 71552
9. Koshi M Yoshimura M Fukuda K Matsui H Saito K Watanabe M Imamura A Chen C J Chem. Phys. 1990 938703. doi: 10.1063/1.459257
10. Davidson F Hanson R K Int. J. Chem. Kinet. 1990 22843. doi: 10.1002/kin.550220805
11. Aleksandrov N Basevich V Ya Vedeneev V I Khim. Fiz. 1994 1390
12. Ottinger C Brozis M Kowalski A Chem. Phys. Lett. 1999 315355. doi: 10.1016/S0009‐2614(99)01192‐6
13. Fano U Macek H H Rev. Mod. Phys. 1973 45553. doi: 10.1103/RevModPhys.45.553
14. Case D E Herschbach D R Mol. Phys. 1975 301537. doi: 10.1080/00268977500103061
15. McClelland G M Herschbach D R J. Phys. Chem. 1979 831445. doi: 10.1021/j100474a018
16. Barnwell J D Loeser J G Herschbach D R J. Phys. Chem. 1983 872781. doi: 10.1021/j100238a017
17. McClelland G M Herschbach D R J. Phys. Chem. 1987 915509. doi: 10.1021/j100305a025
18. Wang M L Han K L Zhan J P Wu V W K He G Z Lou N Q Chem. Phys. Lett. 1997 278307. doi: 10.1016/S0009‐2614(97)01063‐4
19. Wang M L Han K L He G Z J. Chem. Phys. 1998 1095446. doi: 10.1063/1.476522
20. Soep B Vetter R J. Phys. Chem. 1995 9913569. doi: 10.1021/j100037a600
21. Zhang X Xie T X Zhao M Y Han K L Chin.J. Chem. Phys. 2002 15169
22. Chen Dating B Y Han K L Lou N Q Chin. J. Chem. Phys. 2002 15247
23. Cong S L Li Y M Yin H M Sun J Han K L Chin. J. Chem. Phys. 2002 15198
24. Liu J Y Fan W H Han K L Xu D L Lou N Q Chin. J. Chem. Phys. 2003 16161
25. Wang M L Han K L He G Z J. Chem. Phys. 1998 1095446. doi: 10.1063/1.476522
26. Han K L He G Z Lou N Q J. Chem. Phys. 1992 967865. doi: 10.1063/1.462386
27. Han K L He G Z Lou N Q Chem. Phys. Lett. 1992 193165. doi: 10.1016/0009‐2614(92)85702‐C
28. Liu Y F Liu Z Z Lv G S Jiang L J Sun J F Chem. Phys. Lett. 2006 423157. doi: 10.1016/j.cplett.2006.03.059
29. Aoiz F J Brouard M Enriquez P A J. Chem. Phys. 1996 1054964. doi: 10.1063/1.472346
30. Chen M D Han K L Lou N Q Chem. Phys. 2002 283463. doi: 10.1016/S0301‐0104(02)00768‐1
31. Orr-Ewing A J Zare R N Annu. Rev. Phys. Chem. 1994 45315. doi: 10.1146/annurev.pc.45.100194.001531
32. Brouard M Lambert H M Rayner S P Simpson J P Mol.Phys. 1996 89403. doi: 10.1080/002689796173796
33. Aoiz F J Brouard M Enriquez P A J. Chem. Phys. 1996 1054964. doi: 10.1063/1.472346
34. Aoiz F J Brouard M Herrero V J Rabanos V S Stark K Chem. Phys. Lett. 1997 64487. doi: 10.1016/S0009‐2614(96)01365‐6
35. Alexander A J Aoiz F J Banareas L Brouard M Short J Simons J P J. Phys. Chem. A 1997 1017544. doi: 10.1021/jp971123h
AI Summary AI Mindmap
PDF(1265 KB)

Accesses

Citations

Detail

Sections
Recommended

/