Product polarization distribution: Stereodynamics
of the reaction of atom H and radical NH
LIU Yu-fang, ZHAI Hong-sheng, GAO Ya-li
Author information+
Department of Physics, Henan Normal University;
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
The product angular momentum polarization of the reaction of H+NH is calculated via the quasiclassical trajectory method (QCT) based on the extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES) at a collision energy of 5.1 kcal/mol. The calculated results of the vector correlations are denoted by using the angular distribution functions. The polarization-dependent differential cross sections (PDDCSs) demonstrate that the rotational angular momentum of the product H2 is aligned and oriented along the direction perpendicular to the scattering plane. Vector correlation shows that the angular momentum of the product H2 is aligned in the plane perpendicular to the velocity vector. It suggests that the reaction proceeds preferentially when the reactant velocity vector lies in a plane containing all three atoms. The orientation and alignment of the product angular momentum affects the scattering direction of the product molecules. The polarization-dependent differential cross sections (PDD-CSs) reveal that scattering is predominantly in the backward hemisphere.
LIU Yu-fang, ZHAI Hong-sheng, GAO Ya-li.
Product polarization distribution: Stereodynamics
of the reaction of atom H and radical NH. Front. Phys., 2008, 3(2): 153‒158 https://doi.org/10.1007/s11467-008-0021-3
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Dove J E Nip S W Can. J. Chem. 1979 57689. doi: 10.1139/v79‐112 2. Morley C 18th Symp. Int. Combust.Pittsburgh,PAThe Combustion Institute 1981 1823 3. Xu Z F Fang D C Fu X Y J. Phys. Chem. 1997 1014432 4. Xu L J Yan J M FA K Chin. Sci. Bul. 1999 4411 5. Zhang S W Truong T N J. Chem. Phys. 2000 1136149. doi: 10.1063/1.1308544 6. Pascual R Z Schatz G C Lendvay G Troya D J. Phys.Chem. A 2002 1064125. doi: 10.1021/jp0133079 7. Adam L Hack W J Zhu H Qu Z W Schinkea R J. Chem. Phys. 2005 122114301. doi: 10.1063/1.1862615 8. Basevich Ya Vedeneev V I Khim. Fiz. 1988 71552 9. Koshi M Yoshimura M Fukuda K Matsui H Saito K Watanabe M Imamura A Chen C J Chem. Phys. 1990 938703. doi: 10.1063/1.459257 10. Davidson F Hanson R K Int. J. Chem. Kinet. 1990 22843. doi: 10.1002/kin.550220805 11. Aleksandrov N Basevich V Ya Vedeneev V I Khim. Fiz. 1994 1390 12. Ottinger C Brozis M Kowalski A Chem. Phys. Lett. 1999 315355. doi: 10.1016/S0009‐2614(99)01192‐6 13. Fano U Macek H H Rev. Mod. Phys. 1973 45553. doi: 10.1103/RevModPhys.45.553 14. Case D E Herschbach D R Mol. Phys. 1975 301537. doi: 10.1080/00268977500103061 15. McClelland G M Herschbach D R J. Phys. Chem. 1979 831445. doi: 10.1021/j100474a018 16. Barnwell J D Loeser J G Herschbach D R J. Phys. Chem. 1983 872781. doi: 10.1021/j100238a017 17. McClelland G M Herschbach D R J. Phys. Chem. 1987 915509. doi: 10.1021/j100305a025 18. Wang M L Han K L Zhan J P Wu V W K He G Z Lou N Q Chem. Phys. Lett. 1997 278307. doi: 10.1016/S0009‐2614(97)01063‐4 19. Wang M L Han K L He G Z J. Chem. Phys. 1998 1095446. doi: 10.1063/1.476522 20. Soep B Vetter R J. Phys. Chem. 1995 9913569. doi: 10.1021/j100037a600 21. Zhang X Xie T X Zhao M Y Han K L Chin.J. Chem. Phys. 2002 15169 22. Chen Dating B Y Han K L Lou N Q Chin. J. Chem. Phys. 2002 15247 23. Cong S L Li Y M Yin H M Sun J Han K L Chin. J. Chem. Phys. 2002 15198 24. Liu J Y Fan W H Han K L Xu D L Lou N Q Chin. J. Chem. Phys. 2003 16161 25. Wang M L Han K L He G Z J. Chem. Phys. 1998 1095446. doi: 10.1063/1.476522 26. Han K L He G Z Lou N Q J. Chem. Phys. 1992 967865. doi: 10.1063/1.462386 27. Han K L He G Z Lou N Q Chem. Phys. Lett. 1992 193165. doi: 10.1016/0009‐2614(92)85702‐C 28. Liu Y F Liu Z Z Lv G S Jiang L J Sun J F Chem. Phys. Lett. 2006 423157. doi: 10.1016/j.cplett.2006.03.059 29. Aoiz F J Brouard M Enriquez P A J. Chem. Phys. 1996 1054964. doi: 10.1063/1.472346 30. Chen M D Han K L Lou N Q Chem. Phys. 2002 283463. doi: 10.1016/S0301‐0104(02)00768‐1 31. Orr-Ewing A J Zare R N Annu. Rev. Phys. Chem. 1994 45315. doi: 10.1146/annurev.pc.45.100194.001531 32. Brouard M Lambert H M Rayner S P Simpson J P Mol.Phys. 1996 89403. doi: 10.1080/002689796173796 33. Aoiz F J Brouard M Enriquez P A J. Chem. Phys. 1996 1054964. doi: 10.1063/1.472346 34. Aoiz F J Brouard M Herrero V J Rabanos V S Stark K Chem. Phys. Lett. 1997 64487. doi: 10.1016/S0009‐2614(96)01365‐6 35. Alexander A J Aoiz F J Banareas L Brouard M Short J Simons J P J. Phys. Chem. A 1997 1017544. doi: 10.1021/jp971123h
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.