On the robustness of chaos in dynamical systems: Theories and applications

ELHADJ Zeraoulia1, C.SPROTT J.2

PDF(1021 KB)
PDF(1021 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (2) : 195-204. DOI: 10.1007/s11467-008-0017-z

On the robustness of chaos in dynamical systems: Theories and applications

  • ELHADJ Zeraoulia1, C.SPROTT J.2
Author information +
History +

Abstract

This paper offers an overview of some important issues concerning the robustness of chaos in dynamical systems and their applications to the real world.

Cite this article

Download citation ▾
ELHADJ Zeraoulia, C.SPROTT J.. On the robustness of chaos in dynamical systems: Theories and applications. Front. Phys., 2008, 3(2): 195‒204 https://doi.org/10.1007/s11467-008-0017-z

References

1. Andrecut M Ali M K Inter. J. Mod. Phys.B 2001 15(2)177. doi: 10.1142/S0217979201003715
2. Andrecut M Ali M K Mod. Phys. Lett. B 2001 15(12–13)391. doi: 10.1142/S0217984901001793
3. Andrecut M Ali M K Europhys. Lett. 2001 54300. doi: 10.1209/epl/i2001‐00241‐3
4. Andrecut M Ali M K Phys. Rev. E 2001 64025203(R)
5. Gabriel P Inter. J. Bifur. Chaos 2004 14(7)2431. doi: 10.1142/S0218127404010722
6. Jafarizadeh M A Behnia S J. Nonlinear. Math. Phys. 2002 9(1)26. doi: 10.2991/jnmp.2002.9.1.4
7. Singer D SIAM Journal on Applied Mathematics 1978 35(2)260. doi: 10.1137/0135020
8. Barreto E Hunt B Grebogi C Yorke J A Phys.Rev. Lett. 1997 784561. doi: 10.1103/PhysRevLett.78.4561
9. Lozi R Colloque C5, Supplément au n0 8 1978 399
10. Hénon M Commun. Math. Phys. 1976 5069. doi: 10.1007/BF01608556
11. Robert B Robert C Int. J. Control 2002 75(16–17)1356. doi: 10.1080/0020717021000023771
12. Banerjee S Grebogi C Phy.Rev.E 1999 59(4)4052. doi: 10.1103/PhysRevE.59.4052
13. Banergee S York J A Grebogi C Phys. Rev. Lett. 1998 80(14)3049. doi: 10.1103/PhysRevLett.80.3049
14. Hassouneh M A Habed E Banerjee S Feedback Controlof Border Collision Bifurcationsin Two-dimensional Discrete-time SystemsISR TechnicalResearch Report 2002
15. Ottino J M The Kinematics of Mixing: Stretching, Chaos, and TransportCambridgeCambridgeUniversity Press 1989
16. Ottino J M Muzzion F J Tjahjadi M Franjione J G Jana S C Kusch H A Science 1992 257754. doi: 10.1126/science.257.5071.754
17. Lorenz E N J. Atmos. Sci. 1963 20130. doi: 10.1175/1520‐0469(1963)020<0130:DNF>2.0.CO;2
18. Tucker W C. R. Acad. Sci. Paris Ser. I: Math 1999 328(12)1197
19. Stewart I Nature 2000 406948. doi: 10.1038/35023206
20. Franceschini V Giberti C Zheng Z Nonlinearity 1993 6251. doi: 10.1088/0951‐7715/6/2/006
21. Majumdar M Mitra T Economic Theory 1994 4(5)677. doi: 10.1007/BF01212024
22. Morales C A Pacifico M J Pujalls E R Annals of Mathematics 2004 160(2)375
23. Archibald T Centaurus 1988 31(2)141. doi: 10.1111/j.1600‐0498.1988.tb00684.x
24. Widrow B Lehr M A 30 Years of AdaptiveNeural Networks: Perceptron, Madaline, and Backpropagation, Proc.IEEE 1990 78(9)1415
25. Galias Z Zgliczynski P Physica D 1998 115165. doi: 10.1016/S0167‐2789(97)00233‐9
26. Guckenheimer J A Strange,Strange AttractorIn: The Hopf Bifurcationand Its ApplicationsMarsden and McCrackenNew YorkSpringer-Verlag 1976
27. Guckenheimer J Williams R F Publ. Math. IHES 1979 50307
28. Hasting S P Troy W C Bull. Amer. Math. Soc 1992 27298. doi: 10.1090/S0273‐0979‐1992‐00327‐0
29. Mischaikow K Mrozek M Bull. Amer. Math. Soc. 1995 3266. doi: 10.1090/S0273‐0979‐1995‐00558‐6
30. Mukul M Mitra T Ricerche Economiche 1994 48225. doi: 10.1016/0035‐5054(94)90026‐4
31. Rand D Math. Proc. Camb. Phil. Soc. 1978 83451
32. Robinson C Nonlinearity 1989 2495. doi: 10.1088/0951‐7715/2/4/001
33. Rychlik M Ergod. Th. & Dynam. Sys. 1989 10793
34. Smale S Math. Intelligencer 1998 207
35. Sparrow C The Lorenz Equations: Bifurcations, Chaos, and Strange AttractorsNew YorkSpringer-Verlag 1982
36. Tucker W Foundations of Computational Mathematics 2002 2(1)53
37. Williams R F Publ. Math. IHES 1979 50321
38. Araujo V Pacifico M J Pujals E R Viana M preprint, arXiv:math.DS/0511352
39. Anishchenko V S Strelkova G I Attractors of DynamicalSystems, Control of Oscillations and Chaos, 1997. Proc. 1st InternationalConference 27–29 Aug. 1997 Vol. 3498. doi: 10.1109/COC.1997.626654
40. Banerjee SVergheseG CNonlinear Phenomena in Power Electronics:Attractors, Bifurcations, Chaos, and Nonlinear Control, USANew YorkIEEEPress 2001
41. Sun F-Y Liu S-T Lv Z-W Chinese Physics 2007 16(12)3616. doi: 10.1088/1009‐1963/16/12/011
42. Vikas U Kumar R Chaos, Solitons &Fractals 2004 21(5)1195. doi: 10.1016/j.chaos.2003.12.065
43. Potapov A Ali M K Phy. Lett. A 2000 277(6)310. doi: 10.1016/S0375‐9601(00)00726‐X
44. Mira C Inter. J. Bifur. Chaos 1997 7(9)1911. doi: 10.1142/S0218127497001497
45. Chua L O Komuro M Matsumoto T IEEE Transaction in Circuit and System 1986 CAS-331073
46. Kuznetsov S Seleznev E Journal of Experimentaland Theoretical Physics 2006 102(2)355. doi: 10.1134/S1063776106020166
47. Kowalczyk P Nonlinearity 2005 18485. doi: 10.1088/0951‐7715/18/2/002
48. Dogaru R Murgan A T Ortmann S lesner M G Searchingfor Robust Chaos in Discrete Time Neural Networks Using Weight SpaceExploration, Proc. ICNN'96, Washington D. C. 2–6 June, 1996
49. Henk B Konstantinos E Easwar S Nonlinearity 2008 21(1)13. doi: 10.1088/0951‐7715/21/1/002
50. Kei E Takahiro I Akio T IEICE Trans. Fundamentals of Electronics, Communicationsand Computer Sciences 1998 E81-A(6)1223
51. Bhalla U S Lyengar R Chaos 2001 11221. doi: 10.1063/1.1350440
52. Plykin R V Russ. Math. Surv. 2002 57(6)1163. doi: 10.1070/RM2002v057n06ABEH000574
53. Shastry M C Nagaraj N Vaidya P G The β-ExponentialMap: A Generalization of the Logistic Map, and Its Applications inGenerating Pseudo-random Numberspreprint
54. Nithin N V Prabhakar G Bhat. Kishor G Joint EntropyCoding and Encryption Using Robust Chaos preprint
55. Kantz H Grebogi C Prasad A Lai Y-C Sinde E Phys. Rev. E 2002 65026209. doi: 10.1103/PhysRevE.65.026209
56. Anishenko V S Vadivasova T E Strelkova G I Kopeikin A S DiscreteDynamics in Nature and Society 1998 2249. doi: 10.1155/S1026022698000223
57. Klinshpont N E Sataev E A Plykin R V Journal of Physics: Conference Series 2005 2396. doi: 10.1088/1742‐6596/23/1/011
58. Yulmetyev R Emelyanova N Demin S Gafarov F Hänggi P Yulmetyeva D Fluctuations and Noise in Stochastic Spread of RespiratoryInfection Epidemics in Social Networks, Unsolved Problems of Noiseand Fluctuations UPoN, 3rd International Conference 2002 408
59. Dan T Prog. Theor. Phys., Suppl. 2006 61119
60. Ruxton G D Rohani P Theoretical PopulationBiology 1998 53(3)175. doi: 10.1006/tpbi.1998.1312
61. Drutarovsky M Galajda P A Radioengineering 2007 16(3)120
62. Vano J A Wildenberg J C Anderson M B Noel J K Sprott J C Nonlinearity 2006 19(10)2391. doi: 10.1088/0951‐7715/19/10/006
63. Yau H T Yan J J Chaos, Solitons and Fractals 2004 19(4)891. doi: 10.1016/S0960‐0779(03)00255‐8
64. Adrangi B Chatrath A Applied Financial Economics 2003 13(4)245. doi: 10.1080/09603100110115660
65. Tapan M Gerhard S Japanese Economic Review 1999 50(4)470. doi: 10.1111/1468‐5876.00133
66. Ashwin P Rucklidge A M Physica D 1998 122(1)134. doi: 10.1016/S0167‐2789(98)00174‐2
67. Cornfeld I P Fomin S V Sinai Ya G Ergodic TheoryBerlinSpringer-Verlag 1982
68. Elhadj Z Sprott J C Inter. J. Bifur. Chaos 2008 18(4)to appear
69. Elhadj Z Sprott J C A Unified Piecewise SmoothChaotic Mapping that Contains the Hénon and the Lozi Systemssubmitted
70. Alvarez-Llamoza O Cosenza M G Ponce G A Chaos, Solitons & Fractals 2008 36(1)150. doi: 10.1016/j.chaos.2006.06.017
71. Priel A Kanter I Europhys. Lett. 2000 51(2)230. doi: 10.1209/epl/i2000‐00521‐4
72. Afraimovich V S Bykov V V Shil'nikov L P Trans. Moscow Math. Soc. 1982 44153
73. Hassard B Zhang J Hastings S P Troy W C Appl.Math. Lett. 1994 779. doi: 10.1016/0893‐9659(94)90058‐2
74. Mischaikow K Mrozek M Bull. Amer. Math. Soc. 1995 32(1)66. doi: 10.1090/S0273‐0979‐1995‐00558‐6
75. Mischaikow K Mrozek M Math. Comp. 1998 67(223)1023. doi: 10.1090/S0025‐5718‐98‐00945‐4
76. Chen Y Liu Y Up-embeddability of aGraph by Order and Girth, Graphs and Combinatorics 2007 23(5)521
77. Banerjee S Kastha D Das S Vivek G Grebogi C Robust Chaos-the Theoretical Formulationand Experimental Evidence, ISCAS 1999 5293
78. Vijayaraghavan V Leung Henry L A Robust Chaos Radarfor Collision Detection and Vehicular Ranging in Intelligent TransportationSystems, ITSC 2004 548
79. Shanmugam S Leung H A Robust Chaotic SpreadSpectrum Inter-vehicle Communication Scheme for ITS, IEEE InternationalConference on Intelligent Transportation Systems, Shanghai, China Oct. 2003 1540
80. Dafilis M P Liley D T J Cadusch P J Chaos 2001 11(3)474. doi: 10.1063/1.1394193
AI Summary AI Mindmap
PDF(1021 KB)

Accesses

Citations

Detail

Sections
Recommended

/