Dispersion relation for two-dimensional simple
cubic lattices
TIAN Dou-xiang1, WANG Cang-long1, DUAN Wen-shan1, WANG Xiao-yun2
Author information+
1.Department of Physics, Northwest Normal University; 2.School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University;
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
The linear wave equation for the simple cubic lattice is given in this paper. The dispersion relations of both longitudinal and transverse waves are given analytically for the acoustic mode and the optical mode, respectively.
TIAN Dou-xiang, WANG Cang-long, DUAN Wen-shan, WANG Xiao-yun.
Dispersion relation for two-dimensional simple
cubic lattices. Front. Phys., 2008, 3(2): 159‒164 https://doi.org/10.1007/s11467-008-0016-0
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Li L Malomed B A Mihalache D Liu W M Phys.Rev. E 2006 73066610. doi: 10.1103/PhysRevE.73.066610 2. Xie Z W Cao Z X Kats E I Liu W M Phys.Rev. A 2005 71025601. doi: 10.1103/PhysRevA.71.025601 3. Zheng Z G Hu B B Hu G Phys. Rev. E 1998 571139. doi: 10.1103/PhysRevE.57.1139 4. Kaganer V M Mohwald H Dutta P Rev. Mod. Phys. 1999 71779. doi: 10.1103/RevModPhys.71.779 5. Peeters F M Wu X Phys. Rev. A 1987 353109. doi: 10.1103/PhysRevA.35.3109 6. Grimes C C Adams G Phys. Rev. Lett. 1979 42795. doi: 10.1103/PhysRevLett.42.795 7. Yacoby A Stormer H L Wingreen Ned S Pfeiffer L N Baldwin K W West K W Phys. Rev. Lett. 1996 774612. doi: 10.1103/PhysRevLett.77.4612 8. Zhao H Phys. Rev. Lett. 2006 96140602. doi: 10.1103/PhysRevLett.96.140602 9. Bischler U Bertel E Phys. Rev. Lett. 1993 712296. doi: 10.1103/PhysRevLett.71.2296 10. Bertel E Lehmann J Phys. Rev. Lett. 1998 801497. doi: 10.1103/PhysRevLett.80.1497 11. Pachos J Walther H Phys. Rev. Lett. 2002 89187903. doi: 10.1103/PhysRevLett.89.187903 12. Yuan X P Zheng Z G Chin. Phys. Lett. 2007 2492513 13. Tatarkova S A Carruthers A E Dholakia K Phys. Rev. Lett. 2002 89283901. doi: 10.1103/PhysRevLett.89.283901 14. Chu J H I L Phys. Rev. Lett. 1994 724009. doi: 10.1103/PhysRevLett.72.4009 15. Thomas H Morfill G E Demmel V Goree J Feuerbacher B Molmann D Phys. Rev. Lett. 1994 73652. doi: 10.1103/PhysRevLett.73.652 16. Hayashi Y Tachibana K Jpn. J. Appl. Phys. 1994 Part 2 33L804. doi: 10.1143/JJAP.33.L804 17. Melzer A Trottenberg T Piel A Phys. Lett. A 1994 191301. doi: 10.1016/0375‐9601(94)90144‐9 18. Konopka U Morfill G E Ratke L Phys. Rev. Lett. 2000 84891. doi: 10.1103/PhysRevLett.84.891 19. Schweigert I V Schweigert V A Melzer A Piel A Phys. Rev.E 2000 621238. doi: 10.1103/PhysRevE.62.1238 20. Homann A Melzer A Peters S Piel A Phys. Rev.E 1997 567138. doi: 10.1103/PhysRevE.56.7138 21. Peeters F M Wu X Phys. Rev. A 1987 353109. doi: 10.1103/PhysRevA.35.3109 22. Dubin D H E Phys. Plasmas 2000 73895. doi: 10.1063/1.1308078 23. Wang X Bhattacharjee A Hu S Phys. Rev. Lett. 2001 862569. doi: 10.1103/PhysRevLett.86.2569 24. Nunomura S Goree J Hu S Wang X Bhattacharjee A Phys. Rev. E 2002 65066402. doi: 10.1103/PhysRevE.65.066402 25. Homann A Melzer A Peters S Madani R Piei A Phys. Lett. A 1998 242173. doi: 10.1016/S0375‐9601(98)00141‐8
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.