Dispersion relation for two-dimensional simple cubic lattices

TIAN Dou-xiang1, WANG Cang-long1, DUAN Wen-shan1, WANG Xiao-yun2

PDF(1320 KB)
PDF(1320 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (2) : 159-164. DOI: 10.1007/s11467-008-0016-0

Dispersion relation for two-dimensional simple cubic lattices

  • TIAN Dou-xiang1, WANG Cang-long1, DUAN Wen-shan1, WANG Xiao-yun2
Author information +
History +

Abstract

The linear wave equation for the simple cubic lattice is given in this paper. The dispersion relations of both longitudinal and transverse waves are given analytically for the acoustic mode and the optical mode, respectively.

Cite this article

Download citation ▾
TIAN Dou-xiang, WANG Cang-long, DUAN Wen-shan, WANG Xiao-yun. Dispersion relation for two-dimensional simple cubic lattices. Front. Phys., 2008, 3(2): 159‒164 https://doi.org/10.1007/s11467-008-0016-0

References

1. Li L Malomed B A Mihalache D Liu W M Phys.Rev. E 2006 73066610. doi: 10.1103/PhysRevE.73.066610
2. Xie Z W Cao Z X Kats E I Liu W M Phys.Rev. A 2005 71025601. doi: 10.1103/PhysRevA.71.025601
3. Zheng Z G Hu B B Hu G Phys. Rev. E 1998 571139. doi: 10.1103/PhysRevE.57.1139
4. Kaganer V M Mohwald H Dutta P Rev. Mod. Phys. 1999 71779. doi: 10.1103/RevModPhys.71.779
5. Peeters F M Wu X Phys. Rev. A 1987 353109. doi: 10.1103/PhysRevA.35.3109
6. Grimes C C Adams G Phys. Rev. Lett. 1979 42795. doi: 10.1103/PhysRevLett.42.795
7. Yacoby A Stormer H L Wingreen Ned S Pfeiffer L N Baldwin K W West K W Phys. Rev. Lett. 1996 774612. doi: 10.1103/PhysRevLett.77.4612
8. Zhao H Phys. Rev. Lett. 2006 96140602. doi: 10.1103/PhysRevLett.96.140602
9. Bischler U Bertel E Phys. Rev. Lett. 1993 712296. doi: 10.1103/PhysRevLett.71.2296
10. Bertel E Lehmann J Phys. Rev. Lett. 1998 801497. doi: 10.1103/PhysRevLett.80.1497
11. Pachos J Walther H Phys. Rev. Lett. 2002 89187903. doi: 10.1103/PhysRevLett.89.187903
12. Yuan X P Zheng Z G Chin. Phys. Lett. 2007 2492513
13. Tatarkova S A Carruthers A E Dholakia K Phys. Rev. Lett. 2002 89283901. doi: 10.1103/PhysRevLett.89.283901
14. Chu J H I L Phys. Rev. Lett. 1994 724009. doi: 10.1103/PhysRevLett.72.4009
15. Thomas H Morfill G E Demmel V Goree J Feuerbacher B Molmann D Phys. Rev. Lett. 1994 73652. doi: 10.1103/PhysRevLett.73.652
16. Hayashi Y Tachibana K Jpn. J. Appl. Phys. 1994 Part 2 33L804. doi: 10.1143/JJAP.33.L804
17. Melzer A Trottenberg T Piel A Phys. Lett. A 1994 191301. doi: 10.1016/0375‐9601(94)90144‐9
18. Konopka U Morfill G E Ratke L Phys. Rev. Lett. 2000 84891. doi: 10.1103/PhysRevLett.84.891
19. Schweigert I V Schweigert V A Melzer A Piel A Phys. Rev.E 2000 621238. doi: 10.1103/PhysRevE.62.1238
20. Homann A Melzer A Peters S Piel A Phys. Rev.E 1997 567138. doi: 10.1103/PhysRevE.56.7138
21. Peeters F M Wu X Phys. Rev. A 1987 353109. doi: 10.1103/PhysRevA.35.3109
22. Dubin D H E Phys. Plasmas 2000 73895. doi: 10.1063/1.1308078
23. Wang X Bhattacharjee A Hu S Phys. Rev. Lett. 2001 862569. doi: 10.1103/PhysRevLett.86.2569
24. Nunomura S Goree J Hu S Wang X Bhattacharjee A Phys. Rev. E 2002 65066402. doi: 10.1103/PhysRevE.65.066402
25. Homann A Melzer A Peters S Madani R Piei A Phys. Lett. A 1998 242173. doi: 10.1016/S0375‐9601(98)00141‐8
AI Summary AI Mindmap
PDF(1320 KB)

Accesses

Citations

Detail

Sections
Recommended

/