PDF(1693 KB)
Features and states of microscopic particles
in nonlinear quantum-mechanics systems
Author information
+
Institute of Life Science and Technology, University of Electronic Science and Technology of China;International Centre for Materials Physics, The Chinese Academy of Sciences;
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
Abstract
In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schrödinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy,momentum and mass, satisfy minimum uncertainty relation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.
Cite this article
Download citation ▾
PANG Xiao-feng.
Features and states of microscopic particles
in nonlinear quantum-mechanics systems. Front. Phys., 2008, 3(2): 205‒237 https://doi.org/10.1007/s11467-008-0014-2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Bohr D Bub J Phys. Rev. 1935 48169. doi: 10.1103/PhysRev.48.696
2. Schrödinger E Collected Paper on Wave MechanicsLondonBlackie and Son 1928
3. Schrödinger E Proc. Cambridge Puil. Soc. 1935 31555
4. Heisenberg W Z. Phys. 1925 33879Heisenberg W Euler H Z. Phys. 1936 98714
5. Born M Infeld L Proc. Roy. Soc. A 1934 144425. doi: 10.1098/rspa.1934.0059
6. Dirac P A The Principles of Quantum MechanicsOxfordClarendon Press 1967
7. Diner S Farque D Lochak G Selleri F The Wave-ParticleDualismDordrechtRiedel 1984
8. Ferrero M Van der Merwe A New Developments on FundamentalProblems in Quantum PhysicsDordrechtKluwer 1997
9. Ferrero M Van der Merwe A Fundamental Problemsin Quantum PhysicsDordrechtKluwer 1995
10. de Broglie L Nonlinear Wave Mechanics: A Causal InterpretationAmsterdamElsevier 1960
11. Burt P B Quantum Mechanics and Nonlinear WavesNew YorkHarwood Academic Publisher 1981
12. Pang X F J. Low. Temp. Phys. 1985 58334. doi: 10.1007/BF00681310
13. Pang X F Problems of Nonlinear Quantum MechanicsChengduSichuan Normal UniversityPress 1985
14. Pang X F Chin. J. Low. Temp. Supercon. 1982 433ibid 1981 362
15. Pang X F Chin. J. Nature 1982 5254
16. Pang X F Phys. Bulletin Sin. 1983 317
17. Pang X F Chin. J. Potential Science 1985 516
18. Pang X F J. Res. Met. Mat. Sin. 1986 1231
19. Pang X F J. Science Exploration Sin. 1986 470
20. Pang X F The Principle and Theory for Nonlinear Quantum Mechanics, Proc. ICNLP,Shanghai 1989 1098
21. Pang X F Nonlinear Quantum Mechanics, Proc. ICIPES, Beijing 1991 34
22. Pang X F The Principle and Theory of Nonlinear Quantum Mechanics, Proc. 4thAPPC, Seoul, Korea 1990 996
23. Pang X F The Elementary Principle and Theory for Nonlinear Quantum Mechanics,Proc. ICMP, Wuhan 1994 991PF-1
24. Pang X F TheTheory of Nonlinear Quantum MechanicsIn: Research of New SciencesLui HongBeijingChin.Science and Tech. Press 1991 10
25. Pang X F et al.The Properties of Soliton Motion for Superconductivity Electrons,Proc. ICNP., Shanghai 1989 139
26. Pang X F Quantum Mechanics in Nonlinear SystemsSingaporeWorld Scientific PublishingCo. 2005
27. Pang X F The Theory of Nonlinear Quantum MechanicsChongqingChinese Chongqing Press 1994
28. Pang X F Establishment of Nonlinear Quantum Mechanics, Research and Developmentand of World Science and Technology 2006 2811
29. Pang X F Rules ofMotion of Microscopic Particles in Nonlinear Systems, Researchand Development and of World Science and Technology 2003 2454
30. Pang X F Features of Motion of Microscopic Particles in Nonlinear Systemsand Nonlinear Quantum Mechanics in Sciencetific Proceeding - Physicsand OthersBeijingAtomic Energy Press 2006
31. Zakharov V E Shabat A B Sov. Phys. JETP 1972 3462ibid 1973 37823
32. Pang X F Soliton PhysicsChengduSichuan Science and Technology Press 2003
33. Go B L Pang X F SolitonsBeijingChineseScience Press 1987
34. Sulem C Sulem P L The Nonlinrar SchrödingerEquation: Self-focusing and Wave CollapseBerlin, HeidelbergSpringer-Verlag 1999
35. Pang X F Phys. Stat. Sol.(b) 2003 23634. doi: 10.1002/pssb.200301415
36. Chen H H Liu C S Phys. Rev. Lett. 1976 37693. doi: 10.1103/PhysRevLett.37.693
37. Chen H H Phys. Fluids 1978 21377. doi: 10.1063/1.862236
38. Aossey D W Skinner S R Cooney J T Williams J E Gavin JM T Amdersen D R Lonngren K E Phys. Rev. A 1992 452606. doi: 10.1103/PhysRevA.45.2606
39. Thurston R N Weiner A M J. Opt. Soc. Am. B 1991 8471
40. Cooney J L Gavin M T Williams J E Aossey D W Lonngren K E Phys. Fluids B 1991 33277. doi: 10.1063/1.859759
41. Lamb G L Elements of Soliton TheoryNewYorkWiley 1980 118
42. Ikezl H Taylor R J Baker D R Phys. Rev. Lett. 1970 2511. doi: 10.1103/PhysRevLett.25.11
43. Lonngren K E Plasma Phys. 1983 25943. doi: 10.1088/0032‐1028/25/9/001
44. Lonngren K E Andersen D R Cooney J L Phys. Lett. A 1991 156441. doi: 10.1016/0375‐9601(91)90724‐M
45. Lonngren K E Scott A C Solitons in ActionNew YorkAcademic 1978 153
46. Davydov A S Solitons in Molecular SystemsDordrechtReidel Publishing Comp. 1985 1991
47. Pang X F Phys. Rev. E 2000 626989. doi: 10.1103/PhysRevE.62.6516
48. Pang X F European Phys. J. B 2001 19297. doi: 10.1007/s100510170339
49. Pang X F European Phys. J. B 1999 10415. doi: 10.1007/s100510050871
50. Pang X F Physica D 2001 154138. doi: 10.1016/S0167‐2789(01)00220‐2
51. Pang X F J. Phys. Condens. Matter 1990 29541. doi: 10.1088/0953‐8984/2/48/008
52. Pang X F Miiller-Kirsten HJ W J. Phys.Condens. Matter 2000 12885. doi: 10.1088/0953‐8984/12/6/312
53. Pang X F Yuan Y-P Chem. Phys. Lett. 2003 373392. doi: 10.1016/S0009‐2614(03)00576‐1
54. Bardeen L N Cooper L N Schrieffer J R Phys. Rev. 1957 1081175. doi: 10.1103/PhysRev.108.1175
55. Pang X F Phys. Lett. A 1999 259466. doi: 10.1016/S0375‐9601(99)00445‐4
56. Pang X F J. Phys. Chem. Sol. 2001 62491. doi: 10.1016/S0022‐3697(00)00191‐8
57. Lai Y Haus H A Phys. Rev. A 1989 40844854
58. Kartner F X Boivin L Phys. Rev. A 1996 53454. doi: 10.1103/PhysRevA.53.454
59. Scott A C Eilbeck J C Phys. Lett. A 1986 119
60. Scott A C Eilbeck J C Chem. Phys. Lett 1986 13223. doi: 10.1016/0009‐2614(86)80687‐X
61. Scott A C Lomdahl P S Eilbeck J C Chem. Phys. Lett. 1985 11329. doi: 10.1016/0009‐2614(85)85006‐5
62. Pang X F Acta Phys. Sin. 1994 431987
63. Pang X F Chin. J. Phys. Chem. 1995 121062
64. Pang X F Chen X R Chinese Physics 2000 9108
65. Pang X F Chen X R Commun. Theor. Phys. 2001 35313
66. Pang X F Chen X R Commun. Theor. Phys. 2001 35763
67. Pang X F Chen X R J. Phys. Chem. Solid. 2001 62793. doi: 10.1016/S0022‐3697(00)00261‐4
68. Pang X F Zhang H W Modern Phys. Lett. B 2006 201923. doi: 10.1142/S0217984906012080
69. Pang X F Chen X R Inter. J. Mod. Phys.B 2006 202505. doi: 10.1142/S0217979206034820
70. Satsuma J Yajima N Prog. Theor. Phys., Suppl. 1974 55284. doi: 10.1143/PTPS.55.284