Analytical approach to the current correlation
function in dissipative two-state systems
WANG Qin, JIANG Cheng, ZHENG Hang
Author information+
Department of Physics, Shanghai Jiao Tong University;
Show less
History+
Published
05 Mar 2008
Issue Date
05 Mar 2008
Abstract
Using the spin-boson model with coupling to Ohmic bath, an analytical approach is developed to study the dynamics of the current correlation function in dissipative two-state systems with the view of understanding the effects of environment and tunneling on the coherent oscillation and the long-time decay of the current correlation function in these systems. An analytic expression of current correlation function is obtained and the results agree very well with that of numerical simulations.
WANG Qin, JIANG Cheng, ZHENG Hang.
Analytical approach to the current correlation
function in dissipative two-state systems. Front. Phys., 2008, 3(1): 49‒54 https://doi.org/10.1007/s11467-008-0010-6
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Vojta M Tong N H Bulla R Phys. Rev. Lett. 2005 94070604. doi: 10.1103/PhysRevLett.94.070604 2. Bulla R Tong N H Vojta M Phys. Rev. Lett. 2003 91170601. doi: 10.1103/PhysRevLett.91.170601 3. Kimura G Yuasa K Imafuku K Phys. Rev. Lett. 2002 89140403. doi: 10.1103/PhysRevLett.89.140403 4. DiVincenzo D P Loss D Phys. Rev. B 2005 71035318. doi: 10.1103/PhysRevB.71.035318 5. Novais E Neto A H C Borda L Affleck I Zarand G Phys. Rev. B 2005 72014417. doi: 10.1103/PhysRevB.72.014417 6. Leggett A J Chakravarty S Dorsey A T Fisher M P A Garg A Zwerger W Rev. Mod. Phys. 1987 591. doi: 10.1103/RevModPhys.59.1 7. Weiss U Quantum Dissipative SystemsSingaporeWorld Scientific 1993 . doi: null 8. Costi T A Phys. Rev. Lett. 1998 801038. doi: 10.1103/PhysRevLett.80.1038 9. Takagi S Macroscopic Quantum TunnelingCambridgeCambridge UniversityPress 2002 . doi: null 10. Levine G Muthukumar V N Phys. Rev. B 2004 69113203. doi: 10.1103/PhysRevB.69.113203 11. Nielsen M A Chuang I L Quantum Computation andQuantum InformationCambridgeCambridge University Press 2000 . doi: null 12. Vasilevskiy M I Anda E V Makler S S Phys. Rev. B 2004 70035318. doi: 10.1103/PhysRevB.70.035318 13. Sun Q F Guo H Wang J Phys. Rev. Lett. 2003 90258301. doi: 10.1103/PhysRevLett.90.258301 14. Sassetti M Weiss U Phys. Rev. Lett. 1990 652262. doi: 10.1103/PhysRevLett.65.2262 15. Sassetti M Weiss U Phys. Rev. B 1990 415383. doi: null 16. Guinea F Hakim V Muramatsu A Phys. Rev. B 1985 324410. doi: 10.1103/PhysRevB.32.4410 17. Chen H Zhang Y M Wu X Phys. Rev. B 1989 39546. doi: 10.1103/PhysRevB.39.546 18. Chakravarty S Rudnick J Phys. Rev. Lett. 1995 75501. doi: 10.1103/PhysRevLett.75.501 19. Volker K Phys. Rev. B 1998 581862. doi: 10.1103/PhysRevB.58.1862 20. Wurger A Phys. Rev. Lett. 1997 781759. doi: 10.1103/PhysRevLett.78.1759 21. Costi T A Kieffer C Phys. Rev. Lett. 1996 761683. doi: 10.1103/PhysRevLett.76.1683 22. Stockburger J T Mak C H Phys. Rev. Lett. 1998 802657. doi: 10.1103/PhysRevLett.80.2657 23. Egger R Mak C H Phys. Rev. B 1994 5015210. doi: 10.1103/PhysRevB.50.15210 24. Egger R Muhlbacher L Mak C H Phys. Rev. B 2000 615961. doi: null 25. Keil M Schoeller H Phys. Rev. B 2001 63180302. doi: 10.1103/PhysRevB.63.180302 26. Silbey R Harris R A J. Chem. Phys. 1984 802615. doi: 10.1063/1.447055 27. Zheng H Phys. Rev. B 1994 506717. doi: 10.1103/PhysRevB.50.6717 28. Zheng H Phys. Rev. B 2000 611088. doi: 10.1103/PhysRevB.61.1088 29. Zheng H Eur. Phys. J. B 2004 38559. doi: 10.1140/epjb/e2004‐00152‐7 30. Mahan G D Many-Particle PhysicsNew YorkPlenum Press 1990 . doi: null
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.