Analytical approach to the current correlation function in dissipative two-state systems

WANG Qin, JIANG Cheng, ZHENG Hang

PDF(486 KB)
PDF(486 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (1) : 49-54. DOI: 10.1007/s11467-008-0010-6

Analytical approach to the current correlation function in dissipative two-state systems

  • WANG Qin, JIANG Cheng, ZHENG Hang
Author information +
History +

Abstract

Using the spin-boson model with coupling to Ohmic bath, an analytical approach is developed to study the dynamics of the current correlation function in dissipative two-state systems with the view of understanding the effects of environment and tunneling on the coherent oscillation and the long-time decay of the current correlation function in these systems. An analytic expression of current correlation function is obtained and the results agree very well with that of numerical simulations.

Cite this article

Download citation ▾
WANG Qin, JIANG Cheng, ZHENG Hang. Analytical approach to the current correlation function in dissipative two-state systems. Front. Phys., 2008, 3(1): 49‒54 https://doi.org/10.1007/s11467-008-0010-6

References

1. Vojta M Tong N H Bulla R Phys. Rev. Lett. 2005 94070604. doi: 10.1103/PhysRevLett.94.070604
2. Bulla R Tong N H Vojta M Phys. Rev. Lett. 2003 91170601. doi: 10.1103/PhysRevLett.91.170601
3. Kimura G Yuasa K Imafuku K Phys. Rev. Lett. 2002 89140403. doi: 10.1103/PhysRevLett.89.140403
4. DiVincenzo D P Loss D Phys. Rev. B 2005 71035318. doi: 10.1103/PhysRevB.71.035318
5. Novais E Neto A H C Borda L Affleck I Zarand G Phys. Rev. B 2005 72014417. doi: 10.1103/PhysRevB.72.014417
6. Leggett A J Chakravarty S Dorsey A T Fisher M P A Garg A Zwerger W Rev. Mod. Phys. 1987 591. doi: 10.1103/RevModPhys.59.1
7. Weiss U Quantum Dissipative SystemsSingaporeWorld Scientific 1993 . doi: null
8. Costi T A Phys. Rev. Lett. 1998 801038. doi: 10.1103/PhysRevLett.80.1038
9. Takagi S Macroscopic Quantum TunnelingCambridgeCambridge UniversityPress 2002 . doi: null
10. Levine G Muthukumar V N Phys. Rev. B 2004 69113203. doi: 10.1103/PhysRevB.69.113203
11. Nielsen M A Chuang I L Quantum Computation andQuantum InformationCambridgeCambridge University Press 2000 . doi: null
12. Vasilevskiy M I Anda E V Makler S S Phys. Rev. B 2004 70035318. doi: 10.1103/PhysRevB.70.035318
13. Sun Q F Guo H Wang J Phys. Rev. Lett. 2003 90258301. doi: 10.1103/PhysRevLett.90.258301
14. Sassetti M Weiss U Phys. Rev. Lett. 1990 652262. doi: 10.1103/PhysRevLett.65.2262
15. Sassetti M Weiss U Phys. Rev. B 1990 415383. doi: null
16. Guinea F Hakim V Muramatsu A Phys. Rev. B 1985 324410. doi: 10.1103/PhysRevB.32.4410
17. Chen H Zhang Y M Wu X Phys. Rev. B 1989 39546. doi: 10.1103/PhysRevB.39.546
18. Chakravarty S Rudnick J Phys. Rev. Lett. 1995 75501. doi: 10.1103/PhysRevLett.75.501
19. Volker K Phys. Rev. B 1998 581862. doi: 10.1103/PhysRevB.58.1862
20. Wurger A Phys. Rev. Lett. 1997 781759. doi: 10.1103/PhysRevLett.78.1759
21. Costi T A Kieffer C Phys. Rev. Lett. 1996 761683. doi: 10.1103/PhysRevLett.76.1683
22. Stockburger J T Mak C H Phys. Rev. Lett. 1998 802657. doi: 10.1103/PhysRevLett.80.2657
23. Egger R Mak C H Phys. Rev. B 1994 5015210. doi: 10.1103/PhysRevB.50.15210
24. Egger R Muhlbacher L Mak C H Phys. Rev. B 2000 615961. doi: null
25. Keil M Schoeller H Phys. Rev. B 2001 63180302. doi: 10.1103/PhysRevB.63.180302
26. Silbey R Harris R A J. Chem. Phys. 1984 802615. doi: 10.1063/1.447055
27. Zheng H Phys. Rev. B 1994 506717. doi: 10.1103/PhysRevB.50.6717
28. Zheng H Phys. Rev. B 2000 611088. doi: 10.1103/PhysRevB.61.1088
29. Zheng H Eur. Phys. J. B 2004 38559. doi: 10.1140/epjb/e2004‐00152‐7
30. Mahan G D Many-Particle PhysicsNew YorkPlenum Press 1990 . doi: null
AI Summary AI Mindmap
PDF(486 KB)

Accesses

Citations

Detail

Sections
Recommended

/