Studies of synthesizing behaviors and superconductivity
of sol-gel YBaCuO samples in flowing
oxygen atmosphere
LUO Ting1, ZHANG Yi1, ZHANG Yue-yang1, FENG Qing-rong1, LI Xing-guo2, LIN Li2
Author information+
1.School of Physics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University; 2.School of Chemistry and Molecular Engineering, Peking University
Show less
History+
Published
05 Mar 2008
Issue Date
05 Mar 2008
Abstract
Systematic studies of synthesizing behaviors of sol-gel YBa2Cu3O7-x samples in flowing oxygen atmosphere and their superconductivity have been performed. A set of high temperature ?-T curves has been obtained for the whole synthesizing process. After four rounds of synthesizing, the resistivity of the sample was around ? = 1.00 × 10-3 ?cm at room temperature. The ?-T curve of the fourth round shows that the orthorhombic to tetragonal phase transformation of the sample occurs around 600°C, which is lower than that of the YBa2Cu3O7-x sample prepared by conventional solid-state reaction method. Other measurements, such as X-ray diffraction, SEM measurement and low temperature R-T and M-T measurement, were also performed. And the R-T and M-T measurement results suggest that during the synthesizing process, there exist some state at which the sample has better superconductivity than the other states. Moreover, we found screw dislocations presenting on the sample broken surface from the SEM images. This will change the concept that the screw dislocations can only grow on the surface of the YBCO thin films and single crystals.
LUO Ting, ZHANG Yi, ZHANG Yue-yang, FENG Qing-rong, LI Xing-guo, LIN Li.
Studies of synthesizing behaviors and superconductivity
of sol-gel YBaCuO samples in flowing
oxygen atmosphere. Front. Phys., 2008, 3(1): 55‒60 https://doi.org/10.1007/s11467-008-0009-z
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Greedan J E O'Reilly A Stager C V Phys. Rev. B 1987 358770. doi: 10.1103/PhysRevB.35.8770 2. Beech F Miraglia S Santoro A Roth R S Phys.Rev. B 1987 358778. doi: 10.1103/PhysRevB.35.8778 3. Yan Q W Zhang P L Jin L Shen Z G Zhao J K Ren Y Wei Y N Mao T D Liu C X Ning T S Sun K Yang Q S Phys. Rev. B 1987 365599. doi: 10.1103/PhysRevB.36.5599 4. Jorgensen J D Beno M A Hinks D G Soderholm L Volin K J Hitterman R L Grace J D Schuller I K Segre C U Zhang K Kleefisch M S Phys. Rev. B 1987 363608. doi: 10.1103/PhysRevB.36.3608 5. Zhang C J Cui J Y Deng M D Chen P Z Li G X Cheng S G Phys. Lett. A 1999 263452. doi: 10.1016/S0375‐9601(99)00760‐4 6. Cava R J Batlogg B Chen C H Riteman E A Zahurak S M Werder D Phys. Rev. B 1987 365719. doi: 10.1103/PhysRevB.36.5719 7. Manthiram A Goodenough J B Nature 1987 329701. doi: 10.1038/329701a0 8. Feng R Q Wang X J Cao K Physica C 2003 390151. doi: 10.1016/S0921‐4534(03)00697‐X 9. Zhou J Z Zhou W Z Zhou Y L Li L Li G X Feng Q R Chinese Physics 2004 131957. doi: 10.1088/1009‐1963/13/10/003 10. Freitas P P Plaskett T S Phys. Rev. B 1987 365723. doi: 10.1103/PhysRevB.36.5723 11. Ginley D S Venturini E L Kwak J F Baughman R J Morosin B Schirber J E Phys. Rev. B 1987 36829. doi: 10.1103/PhysRevB.36.829 12. Wu M K Ashburn J R Torng C J Hor P H Meng R L Gao L Huang Z J Wang Y Q Chu C W Phys.Rev. Lett. 1987 58908. doi: 10.1103/PhysRevLett.58.908 13. Dam B Huijbregtse J M Klaassen F C van der Geest R C F Doornbos G Rector J H Testa A M Freisem S Aarts J Martínez JC Stäuble-Pümpin B Griessen R Nature 1999 399439. doi: 10.1038/20880 14. Norton D P Lowndes D H Zheng X Y Zhu S War- mack R J Phys. Rev. B 1991 449760. doi: 10.1103/PhysRevB.44.9760 15. Zheng Y X Lowndes D H Zhu S Budai J D War- mack R J Phys. Rev. B 1992 457584. doi: 10.1103/PhysRevB.45.7584 16. Ma W Y Watanabe K Awaji S Motokawa M Phys. Rev.B 2002 65174528. doi: 10.1103/PhysRevB.65.174528 17. Hawley M Raistrick I D Beery J G Houlton R J Science 1991 2511587. doi: 10.1126/science.251.5001.1587 18. Svetchnikov V L Pan V M Zandbergen H W Supercond. Sci. Technol. 1993 6176. doi: 10.1088/0953‐2048/6/3/003 19. Hylton T L Beasley M R Phys. Rev. B 1990 4111669. doi: 10.1103/PhysRevB.41.11669 20. Lang H P Sum R Haefke H Güntherodt H -J Journal of Alloys and Compounds 1993 19597. doi: 10.1016/0925‐8388(93)90695‐J 21. Schlom D G Anselmetti D Bednorz J G Broom R Catana A Frey T Gerber Ch Güntherodt H -J Lang H P Mannhart J Müller K A Z. Phys. B-Condensed Matter 1992 86163. doi: 10.1007/BF01313822 22. Ma Y Watanabe K Awaji S Motokawa M Journalof Crystal Growth 2001 233483. doi: 10.1016/S0022‐0248(01)01587‐1 23. Aranson I S Bishop A R Daruka I Vinokur V M Phys.Rev. Lett. 1998 801770. doi: 10.1103/PhysRevLett.80.1770 24. Sum R Lang H P Haefke H Berthold L Hesse D Güntherodt H -J Journal of Alloys and Compounds 1993 195113. doi: 10.1016/0925‐8388(93)90699‐N 25. Lang H P Haefke H Sum R Güntherodt H -J Berthold L Hesse D Physica C 1992 202289. doi: 10.1016/0921‐4534(92)90173‐A 26. Russell G J Zhou B Journal of Crystal Growth 1996 16542. doi: 10.1016/0022‐0248(96)00163‐7
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.