PDF(521 KB)
Coulomb sink effect on coarsening of metal nanostructures
on surfaces
Author information
+
1.IPRT and Ames Laboratory, U. S. Department of Energy; Department of Materials Science and Engineering, University of Utah; 2.Department of Materials Science and Engineering, University of Utah;
Show less
History
+
Published |
05 Mar 2008 |
Issue Date |
05 Mar 2008 |
Abstract
We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a “Coulomb sink” [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neutral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient features of coarsening of charged Pb mesas on the Si(111) surface, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hollowed or half-hollowed nanowells can be created.
Cite this article
Download citation ▾
HAN Yong, LIU Feng.
Coulomb sink effect on coarsening of metal nanostructures
on surfaces. Front. Phys., 2008, 3(1): 41‒48 https://doi.org/10.1007/s11467-008-0006-2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Rayleigh L Philos. Mag. 1882 14184. doi: null
2. Liu F Press M R Khanna S N Jena P Phys. Rev.Lett. 1987 592562. doi: 10.1103/PhysRevLett.59.2562
3. Okamoto H Chen D Yamada T Phys. Rev. Lett. 2002 89256101. doi: 10.1103/PhysRevLett.89.256101
4. Bauer E Kristallogr Z 1958 110372. doi: null
5. Liu F Phys. Rev. Lett. 2002 89246105. doi: 10.1103/PhysRevLett.89.246105
6. McBride J D Tassell B V Jachmann R C Bee be T P Beebe,J. Phys. Chem. B 2001 1053972. doi: 10.1021/jp003214b
7. Thürmer K Reutt-Robey J E Williams E D Surf. Sci. 2003 537123. doi: 10.1016/S0039‐6028(03)00600‐9
8. Jiang C -S et al.Phys. Rev. Lett. 2004 92106104. doi: 10.1103/PhysRevLett.92.106104
9. Han Y Hupalo M Tringides M C Liu F Surf. Sci. 2008 60262. doi: 10.1016/j.susc.2007.09.044
10. Li S -C Han Y Jia J -F Xue Q -K Liu F Phys. Rev. B 2006 74195428. doi: 10.1103/PhysRevB.74.195428
11. Liu F Li A H Lagally M G Phys. Rev. Lett. 2001 87126103. doi: 10.1103/PhysRevLett.87.126103
12. Han Y et al.Phys. Rev. Lett. 2004 93106102. doi: 10.1103/PhysRevLett.93.106102
13. Eigler D M Schweizer E K Nature 1990 344524. doi: 10.1038/344524a0
14. Shen T -C et al.Science 1995 2681590. doi: 10.1126/science.268.5217.1590
15. Bartels L Meyer G Rieder K-H Phys. Rev. Lett. 1997 79697. doi: 10.1103/PhysRevLett.79.697
16. Stipe B C et al.Phys. Rev. Lett. 1997 784410. doi: 10.1103/PhysRevLett.78.4410
17. Gimzewski J K Joachim C Science 1999 2831683. doi: 10.1126/science.283.5408.1683
18. Kern K et al.Phys. Rev. Lett. 1991 67855. doi: 10.1103/PhysRevLett.67.855
19. Parker T M Wilson L K Condon N G Leibsle F M Phys.Rev. B 1997 566458. doi: 10.1103/PhysRevB.56.6458
20. Nötzel R et al.Nature 1998 39256. doi: 10.1038/32127
21. Seul M Andelman D Science 1995 267476. doi: 10.1126/science.267.5197.476
22. Li S -C et al.Appl. Phys. Lett. 2006 89123111. doi: 10.1063/1.2355461
23. Li S -C et al.Phys. Rev. Lett. 2004 93116103. doi: 10.1103/PhysRevLett.93.116103