Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory

MAO You-dong, LUO Chun-xiong, OU-YANG Qi

PDF(1031 KB)
PDF(1031 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (1) : 74-87. DOI: 10.1007/s11467-008-0004-4

Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory

  • MAO You-dong, LUO Chun-xiong, OU-YANG Qi
Author information +
History +

Abstract

This paper summarizes our studies of DNA nanocompartement in recent years. Biological macromolecules have been used to fabricate many nanostructures, bio-devices, and biomimetics because of their physical and chemical properties. But dynamic nanostructure and bio-machinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartment on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompar- tment is served to encage molecules, switched by the collective effect of Watson-Crick base- pairing interactions. This effect is used to investigate the dynamic process of nanocompartment switching and molecular thermosensing, as well as perform molecular recognition. Further, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartment, which allows highly sensitive label-free DNA array detection. Theoretical analysis and computer simulations confirm our experimental observations, which are discussed in this review paper. Our results suggest that DNA nanocompartment can be used as building blocks for complex biomaterials, because its core functions are independent of substrates and mediators.

Cite this article

Download citation ▾
MAO You-dong, LUO Chun-xiong, OU-YANG Qi. Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory. Front. Phys., 2008, 3(1): 74‒87 https://doi.org/10.1007/s11467-008-0004-4

References

1. Mao C Sun W Shen Z Seeman N C Nature 1999 397144. doi: 10.1038/16437
2. Yuke B Turberfield A J Mills A P Simmel F C Neumann J L Nature 2000 406605. doi: 10.1038/35020524
3. Yan H Zhang X Shen Z Seeman N C Nature 2002 41562. doi: 10.1038/415062a
4. Braun E Eichen Y Sivan U Ben-Yoseph G Nature 1998 391776. doi: 10.1038/35826
5. Kasumov A Y et al.Science 2001 291280. doi: 10.1126/science.291.5502.280
6. Benenson Y et al.Nature 2001 414430. doi: 10.1038/35106533
7. Winfree E Liu F Wenzler L A Seeman N C Nature 1998 394539. doi: 10.1038/28998
8. Park S J Taton A Mirkin C A Science 2002 2951503. doi: 10.1126/science.1066348
9. Gittins D I Bethell D Schiffrin D J Nichols R J Nature 2000 40867. doi: 10.1038/35040518
10. Lahann J et al.Science 2003 299371. doi: 10.1126/science.1078933
11. Mao Y Luo C Ouyang Q Nucleic Acids Res. 2003 31e108. doi: 10.1093/nar/gng108
12. Mao Y et al.Nucleic Acids Res. 2004 32e144. doi: 10.1093/nar/gnh145
13. Luo C X Mao Y D Ouyang Q Acta Biophysica Sinica 2005 21151. doi: null
14. Steel A B Herne T M Tarlov M J Anal. Chem. 1998 704670. doi: 10.1021/ac980037q
15. Herne T M Tarlov M J J. Am. Chem. Soc. 1997 1198916. doi: 10.1021/ja9719586
16. Kelley S O et al.Langmuir 1998 146781. doi: 10.1021/la980874n
17. Kelley S O Barton K B Bioconjugate Chem. 1997 831. doi: 10.1021/bc960070o
18. Okahata Y et al.Anal. Chem. 1998 701288. doi: 10.1021/ac970584w
19. Yang M Yau H C M Chan H L Langmuir 1998 146121. doi: 10.1021/la980577i
20. Chang S Mao Y D Ouyang Q Journal of Physics: Conference Series 2006 2918. doi: 10.1088/1742‐6596/29/1/004
21. Mao Y D Chang S Yang S X Ouyang Q Jiang L Nature Nanotechnology 2007 266. doi: 10.1038/nnano.2007.148
22. Guo Z Guilfoyle R A Thiel A J Wang R Smith L M Nucleic Acids Res. 1994 225456. doi: 10.1093/nar/22.24.5456
23. Paraschiv V et al.Adv. Mater. 2002 14722. doi: 10.1002/1521‐4095(20020517)14:10<722::AID‐ADMA722>3.0.CO;2‐T
24. Jing T W et al.Proc. Natl. Acad. Sci. USA 1993 908934. doi: 10.1073/pnas.90.19.8934
25. Allemand J F Bensimon D Lavery R Croquette V Proc. Natl. Acad. Sci. USA 1998 9514152. doi: 10.1073/pnas.95.24.14152
26. Bard A J Fulkner L R Electrochemical methodsNew YorkWiley 1980 . doi: null
27. Tuite E Nordén B J. Am. Chem. Soc. 1994 1167548. doi: 10.1021/ja00096a011
28. Rohs R Sklenar H Lavery R Roder B J. Am.Chem. Soc. 2000 1222860. doi: 10.1021/ja992966k
29. Ohuigin C et al.Nucleic Acids Res. 1987 157411. doi: 10.1093/nar/15.18.7411
30. Aoki H Buhlmann P Umezawa Y Electroanalysis 2000 121272. doi: 10.1002/1521‐4109(200011)12:16<1272::AID‐ELAN1272>3.0.CO;2‐F
31. Cater M T Rodriguez M Bard A J J. Am. Chem. Soc. 1989 1118901. doi: 10.1021/ja00206a020
32. Johnston D H Thorp H H J. Phys. Chem. 1996 10013837. doi: 10.1021/jp960252f
33. Reid G D et al.J. Am. Chem. Soc. 2001 1236953. doi: 10.1021/ja015584z
34. Lifson S J. Chem. Phys. 1964 403705. doi: 10.1063/1.1725077
35. Poland D Scheraga H A J. Chem. Phys. 1966 451456. doi: 10.1063/1.1727785
36. Poland D Scheraga H A J. Chem. Phys. 1966 451464. doi: 10.1063/1.1727786
37. Zhang Y L Zheng W M Liu J X Chen Y Z Phys.Rev. E 1997 567100. doi: 10.1103/PhysRevE.56.7100
38. Theodorakopoulos N Dauxois T Peyard M Phys. Rev. Lett. 2000 856. doi: 10.1103/PhysRevLett.85.6
39. Dauxois T Peyard M Phys. Rev. E 1995 514027. doi: 10.1103/PhysRevE.51.4027
40. Dauxois T Peyard M Phys. Rev. E 1993 47R44. doi: 10.1103/PhysRevE.47.R44
41. Zimm B H Bragg J K J. Chem. Phys. 1959 281246. doi: 10.1063/1.1744378
42. Harreis H M Kornyshev A A Likos C N Lowen H Sutmann G Phys. Rev. Lett. 2002 89018303. doi: 10.1103/PhysRevLett.89.018303
43. Harreis H M Likos C N Lowen H Biophys. J. 2003 843607. doi: null
44. Kornyshev A A Leikin S J. Chem. Phys. 1997 1073656. doi: 10.1063/1.475320
45. Kornyshev A A Phys. Rev. E 2000 622576. doi: 10.1103/PhysRevE.62.2576
46. Allahyarov E Lowen H Phys. Rev. E 2000 625542. doi: 10.1103/PhysRevE.62.5542
47. Kornyshev A A Phys. Rev. Lett. 2001 863666. doi: 10.1103/PhysRevLett.86.3666
48. Hill T L J. Chem. Phys. 1959 30383. doi: 10.1063/1.1729961
49. Goychuk I Hänggi P Proc. Natl. Acad. Sci.USA 2002 993552. doi: 10.1073/pnas.052015699
50. Wiggins P Phillips R Proc. Natl. Acad. Sci.USA 2004 1014071. doi: 10.1073/pnas.0307804101
51. Markin S Sachs F Phys. Biol. 2004 1110. doi: 10.1088/1478‐3967/1/2/007
52. Cherstvy A G Kornyshev A A Leikin S J. Phys. Chem. B 2004 1086508. doi: 10.1021/jp0380475
53. Kornyshev A A Leikin S Phys. Rev. Lett. 2001 863666. doi: 10.1103/PhysRevLett.86.3666
54. Wiggins P A et al.Nature Nanotechnology 2006 1137. doi: 10.1038/nnano.2006.63
55. Chou T Phys. Rev. Lett. 1998 8085. doi: 10.1103/PhysRevLett.80.85
56. Hahn K Kärger J Kukla V Phys. Rev. Lett. 1996 762762. doi: 10.1103/PhysRevLett.76.2762
57. Eisenberg R S Klosek M M Schuss Z J. Chem. Phys. 1995 1021767. doi: 10.1063/1.468704
58. Nadler B Schuss Z Singer A Phys. Rev. Lett. 2005 94218101. doi: 10.1103/PhysRevLett.94.218101
59. Kosztin I Schulten K Phys. Rev. Lett. 2004 93238102. doi: 10.1103/PhysRevLett.93.238102
60. Hille B Ion Channels of Excitable MembranesSunderlandSinauer Associates 2001 . doi: null
61. Gillespie P G Walker R G Nature 2001 413194. doi: 10.1038/35093011
62. Yellen G Nature 2002 41935. doi: 10.1038/nature00978
63. MacKinnon R Nobel lecture, Angew. Chem. Int. Ed. 2004 434265. doi: 10.1002/anie.200400662
64. Perozo E Cortes D M Sompornpisut P Kloda A Martinac B Nature 2002 418942. doi: 10.1038/nature00992
65. Chinappi M De Angeles E Melchionna S Casciola C M Succi S Piva R Phys. Rev. Lett. 2006 97144509. doi: 10.1103/PhysRevLett.97.144509
66. Cheng J Kricka L J Biochip TechnologyPhiladelphia, PAHarwood Academic Publishers 2001 . doi: null
AI Summary AI Mindmap
PDF(1031 KB)

Accesses

Citations

Detail

Sections
Recommended

/