Reversibly switchable DNA nanocompartment on
surfaces: experiments, applications, and theory
MAO You-dong, LUO Chun-xiong, OU-YANG Qi
Author information+
School of Physics, Key Laboratory for Mesoscopic Physics, and Center for Theoretical Biology, Peking University
Show less
History+
Published
05 Mar 2008
Issue Date
05 Mar 2008
Abstract
This paper summarizes our studies of DNA nanocompartement in recent years. Biological macromolecules have been used to fabricate many nanostructures, bio-devices, and biomimetics because of their physical and chemical properties. But dynamic nanostructure and bio-machinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartment on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompar- tment is served to encage molecules, switched by the collective effect of Watson-Crick base- pairing interactions. This effect is used to investigate the dynamic process of nanocompartment switching and molecular thermosensing, as well as perform molecular recognition. Further, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartment, which allows highly sensitive label-free DNA array detection. Theoretical analysis and computer simulations confirm our experimental observations, which are discussed in this review paper. Our results suggest that DNA nanocompartment can be used as building blocks for complex biomaterials, because its core functions are independent of substrates and mediators.
MAO You-dong, LUO Chun-xiong, OU-YANG Qi.
Reversibly switchable DNA nanocompartment on
surfaces: experiments, applications, and theory. Front. Phys., 2008, 3(1): 74‒87 https://doi.org/10.1007/s11467-008-0004-4
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Mao C Sun W Shen Z Seeman N C Nature 1999 397144. doi: 10.1038/16437 2. Yuke B Turberfield A J Mills A P Simmel F C Neumann J L Nature 2000 406605. doi: 10.1038/35020524 3. Yan H Zhang X Shen Z Seeman N C Nature 2002 41562. doi: 10.1038/415062a 4. Braun E Eichen Y Sivan U Ben-Yoseph G Nature 1998 391776. doi: 10.1038/35826 5. Kasumov A Y et al.Science 2001 291280. doi: 10.1126/science.291.5502.280 6. Benenson Y et al.Nature 2001 414430. doi: 10.1038/35106533 7. Winfree E Liu F Wenzler L A Seeman N C Nature 1998 394539. doi: 10.1038/28998 8. Park S J Taton A Mirkin C A Science 2002 2951503. doi: 10.1126/science.1066348 9. Gittins D I Bethell D Schiffrin D J Nichols R J Nature 2000 40867. doi: 10.1038/35040518 10. Lahann J et al.Science 2003 299371. doi: 10.1126/science.1078933 11. Mao Y Luo C Ouyang Q Nucleic Acids Res. 2003 31e108. doi: 10.1093/nar/gng108 12. Mao Y et al.Nucleic Acids Res. 2004 32e144. doi: 10.1093/nar/gnh145 13. Luo C X Mao Y D Ouyang Q Acta Biophysica Sinica 2005 21151. doi: null 14. Steel A B Herne T M Tarlov M J Anal. Chem. 1998 704670. doi: 10.1021/ac980037q 15. Herne T M Tarlov M J J. Am. Chem. Soc. 1997 1198916. doi: 10.1021/ja9719586 16. Kelley S O et al.Langmuir 1998 146781. doi: 10.1021/la980874n 17. Kelley S O Barton K B Bioconjugate Chem. 1997 831. doi: 10.1021/bc960070o 18. Okahata Y et al.Anal. Chem. 1998 701288. doi: 10.1021/ac970584w 19. Yang M Yau H C M Chan H L Langmuir 1998 146121. doi: 10.1021/la980577i 20. Chang S Mao Y D Ouyang Q Journal of Physics: Conference Series 2006 2918. doi: 10.1088/1742‐6596/29/1/004 21. Mao Y D Chang S Yang S X Ouyang Q Jiang L Nature Nanotechnology 2007 266. doi: 10.1038/nnano.2007.148 22. Guo Z Guilfoyle R A Thiel A J Wang R Smith L M Nucleic Acids Res. 1994 225456. doi: 10.1093/nar/22.24.5456 23. Paraschiv V et al.Adv. Mater. 2002 14722. doi: 10.1002/1521‐4095(20020517)14:10<722::AID‐ADMA722>3.0.CO;2‐T 24. Jing T W et al.Proc. Natl. Acad. Sci. USA 1993 908934. doi: 10.1073/pnas.90.19.8934 25. Allemand J F Bensimon D Lavery R Croquette V Proc. Natl. Acad. Sci. USA 1998 9514152. doi: 10.1073/pnas.95.24.14152 26. Bard A J Fulkner L R Electrochemical methodsNew YorkWiley 1980 . doi: null 27. Tuite E Nordén B J. Am. Chem. Soc. 1994 1167548. doi: 10.1021/ja00096a011 28. Rohs R Sklenar H Lavery R Roder B J. Am.Chem. Soc. 2000 1222860. doi: 10.1021/ja992966k 29. Ohuigin C et al.Nucleic Acids Res. 1987 157411. doi: 10.1093/nar/15.18.7411 30. Aoki H Buhlmann P Umezawa Y Electroanalysis 2000 121272. doi: 10.1002/1521‐4109(200011)12:16<1272::AID‐ELAN1272>3.0.CO;2‐F 31. Cater M T Rodriguez M Bard A J J. Am. Chem. Soc. 1989 1118901. doi: 10.1021/ja00206a020 32. Johnston D H Thorp H H J. Phys. Chem. 1996 10013837. doi: 10.1021/jp960252f 33. Reid G D et al.J. Am. Chem. Soc. 2001 1236953. doi: 10.1021/ja015584z 34. Lifson S J. Chem. Phys. 1964 403705. doi: 10.1063/1.1725077 35. Poland D Scheraga H A J. Chem. Phys. 1966 451456. doi: 10.1063/1.1727785 36. Poland D Scheraga H A J. Chem. Phys. 1966 451464. doi: 10.1063/1.1727786 37. Zhang Y L Zheng W M Liu J X Chen Y Z Phys.Rev. E 1997 567100. doi: 10.1103/PhysRevE.56.7100 38. Theodorakopoulos N Dauxois T Peyard M Phys. Rev. Lett. 2000 856. doi: 10.1103/PhysRevLett.85.6 39. Dauxois T Peyard M Phys. Rev. E 1995 514027. doi: 10.1103/PhysRevE.51.4027 40. Dauxois T Peyard M Phys. Rev. E 1993 47R44. doi: 10.1103/PhysRevE.47.R44 41. Zimm B H Bragg J K J. Chem. Phys. 1959 281246. doi: 10.1063/1.1744378 42. Harreis H M Kornyshev A A Likos C N Lowen H Sutmann G Phys. Rev. Lett. 2002 89018303. doi: 10.1103/PhysRevLett.89.018303 43. Harreis H M Likos C N Lowen H Biophys. J. 2003 843607. doi: null 44. Kornyshev A A Leikin S J. Chem. Phys. 1997 1073656. doi: 10.1063/1.475320 45. Kornyshev A A Phys. Rev. E 2000 622576. doi: 10.1103/PhysRevE.62.2576 46. Allahyarov E Lowen H Phys. Rev. E 2000 625542. doi: 10.1103/PhysRevE.62.5542 47. Kornyshev A A Phys. Rev. Lett. 2001 863666. doi: 10.1103/PhysRevLett.86.3666 48. Hill T L J. Chem. Phys. 1959 30383. doi: 10.1063/1.1729961 49. Goychuk I Hänggi P Proc. Natl. Acad. Sci.USA 2002 993552. doi: 10.1073/pnas.052015699 50. Wiggins P Phillips R Proc. Natl. Acad. Sci.USA 2004 1014071. doi: 10.1073/pnas.0307804101 51. Markin S Sachs F Phys. Biol. 2004 1110. doi: 10.1088/1478‐3967/1/2/007 52. Cherstvy A G Kornyshev A A Leikin S J. Phys. Chem. B 2004 1086508. doi: 10.1021/jp0380475 53. Kornyshev A A Leikin S Phys. Rev. Lett. 2001 863666. doi: 10.1103/PhysRevLett.86.3666 54. Wiggins P A et al.Nature Nanotechnology 2006 1137. doi: 10.1038/nnano.2006.63 55. Chou T Phys. Rev. Lett. 1998 8085. doi: 10.1103/PhysRevLett.80.85 56. Hahn K Kärger J Kukla V Phys. Rev. Lett. 1996 762762. doi: 10.1103/PhysRevLett.76.2762 57. Eisenberg R S Klosek M M Schuss Z J. Chem. Phys. 1995 1021767. doi: 10.1063/1.468704 58. Nadler B Schuss Z Singer A Phys. Rev. Lett. 2005 94218101. doi: 10.1103/PhysRevLett.94.218101 59. Kosztin I Schulten K Phys. Rev. Lett. 2004 93238102. doi: 10.1103/PhysRevLett.93.238102 60. Hille B Ion Channels of Excitable MembranesSunderlandSinauer Associates 2001 . doi: null 61. Gillespie P G Walker R G Nature 2001 413194. doi: 10.1038/35093011 62. Yellen G Nature 2002 41935. doi: 10.1038/nature00978 63. MacKinnon R Nobel lecture, Angew. Chem. Int. Ed. 2004 434265. doi: 10.1002/anie.200400662 64. Perozo E Cortes D M Sompornpisut P Kloda A Martinac B Nature 2002 418942. doi: 10.1038/nature00992 65. Chinappi M De Angeles E Melchionna S Casciola C M Succi S Piva R Phys. Rev. Lett. 2006 97144509. doi: 10.1103/PhysRevLett.97.144509 66. Cheng J Kricka L J Biochip TechnologyPhiladelphia, PAHarwood Academic Publishers 2001 . doi: null
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.