Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface

LI Bin1, ZHAO Jin2, FENG Min3, ONDA Ken4

PDF(1002 KB)
PDF(1002 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (1) : 26-40. DOI: 10.1007/s11467-008-0001-7

Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface

  • LI Bin1, ZHAO Jin2, FENG Min3, ONDA Ken4
Author information +
History +

Abstract

The femtosecond time-resolved two-photon photoemission (TR-2PP) and the ultra high vacuum (UHV) surface science techniques are integrated to investigate the elec- tronic structures and the interfacial electron transfer dynamics at the atomically ordered adsorbate overlayers on TiO2 single- crystalline surfaces. Our research into the CH3OH/TiO2 system exhibits complex dynamics, providing abundant informa- tion with regard to electron transport and solvation processes in the interfacial solvent structures. These represent the fundamentally physical, photochemical, and photocatalytic reactions of protic chemicals covered with metal-oxides.

Cite this article

Download citation ▾
LI Bin, ZHAO Jin, FENG Min, ONDA Ken. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface. Front. Phys., 2008, 3(1): 26‒40 https://doi.org/10.1007/s11467-008-0001-7

References

1. Einstein A Ann. Phys. (Leipzig) 1905 17132. doi: null
2. Memmel N Surf. Sci. Rep. 1998 3291. doi: 10.1016/S0167‐5729(98)00006‐5
3. Smith N V Phys. Rev. B 1985 323549. doi: 10.1103/PhysRevB.32.3549
4. Lindstorm C D Zhu X Y Chem. Rev. 2006 1064281. doi: 10.1021/cr0501689
5. Galperin M Nitzan A Phys. Rev. Lett. 2005 95206802. doi: 10.1103/PhysRevLett.95.206802
6. Petek H Ogawa S Prog. Surf. Sci. 1997 56239. doi: 10.1016/S0079‐6816(98)00002‐1
7. Li B Ph. D Thesis,University of Pittsburgh 2006 . doi: null
8. Yariv A Quantum ElectronicsJohn Wiley & Sons 1989 . doi: null
9. Diels J C Rudolph W Ultrashort Laser PulsePhenomenaAcademic Press 1995 . doi: null
10. Linsebigler A L Lu G Yates J T Chem. Rev. 1995 95735. doi: 10.1021/cr00035a013
11. Kamat P V Chem. Rev. 1993 93267. doi: 10.1021/cr00017a013
12. Grätzel M Nature 2001 414338. doi: 10.1038/35104607
13. Li B Zhao J Onda K et al.Science 2006 3111436. doi: 10.1126/science.1122190
14. Onda K Li B Zhao J et al.Science 2005 3081154. doi: 10.1126/science.1109366
15. Onda K Li B Zhao J et al.Surf. Sci. 2005 59332. doi: 10.1016/j.susc.2005.06.044
16. Nessler W Ogawa S Nagano H et al.J. Elect. Spect. Rel. Phen. 1998 88–91495. doi: 10.1016/S0368‐2048(97)00260‐0
17. Petek H Heberle A P Nessler W et al.Phys. Rev. Lett. 1997 794649. doi: 10.1103/PhysRevLett.79.4649
18. Ogawa S Nagano H Petek H Phys. Rev. Lett. 1997 781339. doi: 10.1103/PhysRevLett.78.1339
19. Saleh B Teich M C Fundamentals of PhotonicsNew YorkJohnWiley & Sons, INC 1991 . doi: null
20. Hendry E Wang F Shan J et al.Phys. Rev. B 2004 69081101. doi: 10.1103/PhysRevB.69.081101
21. Minato T Zhao J Sainoo Y et al.Phys. Rev. Lett.submitted. doi: null
22. Liu S H J. Phys. Chem. B 2002 10612908. doi: 10.1021/jp025772r
23. Pshenichnikov M S Baltuska A Wiersma D A Chem. Phys. Lett. 2004 389171. doi: 10.1016/j.cplett.2004.03.107
24. Hammers-Schiffer S Acc. Chem. Res. 2001 34273. doi: 10.1021/ar9901117
25. Cukier R I Nocera D G Annu. Rev. Phys. Chem. 1998 49337. doi: 10.1146/annurev.physchem.49.1.337
26. Stier W Prezhdo O V J. Phys. Chem. B 2002 1068047. doi: 10.1021/jp014267b
27. Tributsch H Pohlmann L Science 1998 2791891. doi: 10.1126/science.279.5358.1891
28. Rego L G C Batista V S Am J. Chem. Soc. 2003 1257989. doi: 10.1021/ja0346330
29. Decornez H Hammes-Schiffer S J. Phys. Chem. A 2000 1049370. doi: 10.1021/jp001967s
30. Zhao J Li B Onda K et al.Chem. Rev. 2006 1064402. doi: 10.1021/cr050173c
31. Weida M J Ogawa S Nagano H et al.J. Opt. Soc. Am. B 2000 171443. doi: 10.1364/JOSAB.17.001443
AI Summary AI Mindmap
PDF(1002 KB)

Accesses

Citations

Detail

Sections
Recommended

/