Collections

Frontiers of halide perovskites for optoelectronic devices
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • REVIEW ARTICLE
    Fu Qiu, Yutian Lei, Zhiwen Jin
    Frontiers of Optoelectronics, 2022, 15(4): 47. https://doi.org/10.1007/s12200-022-00048-x

    Copper-based metal halides have become important materials in the field of X-ray and photodetection due to their excellent optical properties, good environmental stability and low toxicity. This review presents the progress of research on crystal structure/morphology, photophysics/optical properties and applications of copper-based metal halides. We also discuss the challenges of copper-based metal halides with a perspective of their future research directions.

  • RESEARCH ARTICLE
    Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu
    Frontiers of Optoelectronics, 2022, 15(4): 43. https://doi.org/10.1007/s12200-022-00044-1

    Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10?9 A/cm2 for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (JT) and the generation-recombination current (Jg-r). The typical observed failures of p–n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.

  • RESEARCH ARTICLE
    Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang
    Frontiers of Optoelectronics, 2022, 15(3): 39. https://doi.org/10.1007/s12200-022-00038-z

    Formamidinium lead triiodide (FAPbI3) perovskite quantum dots (PQDs) show great advantages in photovoltaic applications due to their ideal bandgap energy, high stability and solution processability. The anti-solvent used for the post-treatment of FAPbI3 PQD solid films significantly affects the surface chemistry of the PQDs, and thus the vacancies caused by surface ligand removal inhibit the optoelectronic properties and stability of PQDs. Here, we study the effects of different anti-solvents with different polarities on FAPbI3 PQDs and select a series of organic molecules for surface passivation of PQDs. The results show that methyl acetate could effectively remove surface ligands from the PQD surface without destroying its crystal structure during the post-treatment. The benzamidine hydrochloride (PhFACl) applied as short ligands of PQDs during the post-treatment could fill the A-site and X-site vacancies of PQDs and thus improve the electronic coupling of PQDs. Finally, the PhFACl-based PQD solar cell (PQDSC) achieves a power conversion efficiency of 6.4%, compared to that of 4.63% for the conventional PQDSC. This work provides a reference for insights into the surface passivation of PQDs and the improvement in device performance of PQDSCs.