Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells

Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang

PDF(3822 KB)
PDF(3822 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 39. DOI: 10.1007/s12200-022-00038-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells

Author information +
History +

Abstract

Formamidinium lead triiodide (FAPbI3) perovskite quantum dots (PQDs) show great advantages in photovoltaic applications due to their ideal bandgap energy, high stability and solution processability. The anti-solvent used for the post-treatment of FAPbI3 PQD solid films significantly affects the surface chemistry of the PQDs, and thus the vacancies caused by surface ligand removal inhibit the optoelectronic properties and stability of PQDs. Here, we study the effects of different anti-solvents with different polarities on FAPbI3 PQDs and select a series of organic molecules for surface passivation of PQDs. The results show that methyl acetate could effectively remove surface ligands from the PQD surface without destroying its crystal structure during the post-treatment. The benzamidine hydrochloride (PhFACl) applied as short ligands of PQDs during the post-treatment could fill the A-site and X-site vacancies of PQDs and thus improve the electronic coupling of PQDs. Finally, the PhFACl-based PQD solar cell (PQDSC) achieves a power conversion efficiency of 6.4%, compared to that of 4.63% for the conventional PQDSC. This work provides a reference for insights into the surface passivation of PQDs and the improvement in device performance of PQDSCs.

Graphical abstract

Keywords

FAPbI3 / Perovskite quantum dot / Antisolvent / Surface passivation / Solar cell

Cite this article

Download citation ▾
Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells. Front. Optoelectron., 2022, 15(3): 39 https://doi.org/10.1007/s12200-022-00038-z

References

[1]
Hui, W., Chao, L., Lu, H., Xia, F., Wei, Q., Su, Z., Niu, T., Tao, L., Du, B., Li, D., Wang, Y., Dong, H., Zuo, S., Li, B., Shi, W., Ran, X., Li, P., Zhang, H., Wu, Z., Ran, C., Song, L., Xing, G., Gao, X., Zhang, J., Xia, Y., Chen, Y., Huang, W.: Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021)
CrossRef Google scholar
[2]
Zhang, F., Ma, Z., Shi, Z., Chen, X., Wu, D., Li, X., Shan, C.: Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 1–38 (2021)
CrossRef Google scholar
[3]
Chen, J.X., Zheng, S.Y., Jia, D.L., Liu, W.L., Andruszkiewicz, A., Qin, C.C., Yu, M., Liu, J.H., Johansson, E.M.J., Zhang, X.L.: Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. Acs Energy Lett. 6, 1970–1989 (2021)
CrossRef Google scholar
[4]
Zheng, S.Y., Wang, Y.F., Jia, D.L., Tian, L., Chen, J.X., Shan, L.W., Dong, L.M., Zhang, X.L.: Strong coupling of colloidal quantum dots via self-assemble passivation for efficient infrared solar cells. Adv. Mater. Interfaces 8, 2100489 (2021)
CrossRef Google scholar
[5]
Yang, H., Gutiérrez-Arzaluz, L., Maity, P., Abdulhamid, M.A., Yin, J., Zhou, Y., Chen, C., Han, Y., Szekely, G., Bakr, O.M., Mohammed, O.F.: Air-resistant lead halide perovskite nanocrystals embedded into polyimide of intrinsic microporosity. Energy Mater. Adv. 2021, 1–9 (2021)
CrossRef Google scholar
[6]
Wang, Y., Mei, X., Qiu, J., Zhou, Q., Jia, D., Yu, M., Liu, J., Zhang, X.: Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study. J. Phys. Chem. Lett. 12, 11330–11338 (2021)
CrossRef Google scholar
[7]
Shan, S., Li, Y., Wu, H., Chen, T., Niu, B., Zhang, Y., Wang, D., Kan, C., Yu, X., Zuo, L., Chen, H.: Manipulating the film morphology evolution toward green solvent-processed perovskite solar cells. SusMat 1, 537–544 (2021)
CrossRef Google scholar
[8]
Wang, Y., Liu, J., Yu, M., Zhong, J., Zhou, Q., Qiu, J., Zhang, X.: SnO2 surface halogenation to improve photovoltaic performance of perovskite solar cells. Acta Phys.-Chim. Sin. 37, 2006030 (2021)
CrossRef Google scholar
[9]
Zhang, D., Fan, B., Ying, L., Li, N., Brabec, C.J., Huang, F., Cao, Y.: Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1, 4–23 (2021)
CrossRef Google scholar
[10]
Zou, G., Chen, Z., Li, Z., Yip, H.-L.: Blue perovskite light-emitting diodes: opportunities and challenges. Acta Phys.-Chim. Sin. 37, 2009002 (2021)
CrossRef Google scholar
[11]
Mei, X., Jia, D., Chen, J., Zheng, S., Zhang, X.: Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 43, 101449 (2022)
CrossRef Google scholar
[12]
Bi, C.H., Kershaw, S.V., Rogach, A.L., Tian, J.J.: Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019)
CrossRef Google scholar
[13]
Zheng, C., Liu, A., Bi, C., Tian, J.: SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys.-Chim. Sin. 37, 2007084 (2021)
CrossRef Google scholar
[14]
Wu, J., Li, Y., Shi, J., Wu, H., Luo, Y., Li, D., Meng, Q.: UV photodetectors based on high quality CsPbCl3 film prepared by a two-step diffusion method. Acta Phys.-Chim. Sin. 37, 2004041 (2021)
CrossRef Google scholar
[15]
Jia, D., Chen, J., Mei, X., Fan, W., Luo, S., Yu, M., Liu, J., Zhang, X.: Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021)
CrossRef Google scholar
[16]
Chen, J., Jia, D., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224–261 (2021)
CrossRef Google scholar
[17]
Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M.: Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)
CrossRef Google scholar
[18]
Chen, K.Q., Zhong, Q.H., Chen, W., Sang, B.H., Wang, Y.W., Yang, T.Q., Liu, Y.L., Zhang, Y.P., Zhang, H.: Short-chain ligandpassivated stable alpha-CsPbI2 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)
CrossRef Google scholar
[19]
Shi, J.W., Li, F.C., Jin, Y., Liu, C., Cohen-Kleinstein, B., Yuan, S., Li, Y.Y., Wang, Z.K., Yuan, J.Y., Ma, W.L.: In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59, 22230–22237 (2020)
CrossRef Google scholar
[20]
Qian, Y.L., Shi, Y., Shi, G.Y., Shi, G.Z., Zhang, X.L., Yuan, L., Zhong, Q.X., Liu, Y., Wang, Y., Ling, X.F., Li, F.C., Cao, M.H., Li, S.J., Zhang, Q., Liu, Z.K., Ma, W.L.: The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5, 2100090 (2021)
CrossRef Google scholar
[21]
Sanehira, E.M., Marshall, A.R., Christians, J.A., Harvey, S.P., Ciesielski, P.N., Wheeler, L.M., Schulz, P., Lin, L.Y., Beard, M.C., Luther, J.M.: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)
CrossRef Google scholar
[22]
Wheeler, L.M., Sanehira, E.M., Marshall, A.R., Schulz, P., Suri, M., Anderson, N.C., Christians, J.A., Nordlund, D., Sokaras, D., Kroll, T., Harvey, S.P., Berry, J.J., Lin, L.Y., Luther, J.M.: Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018)
CrossRef Google scholar
[23]
Zhang, L., Kang, C., Zhang, G., Pan, Z., Huang, Z., Xu, S., Rao, H., Liu, H., Wu, S., Wu, X., Li, X., Zhu, Z., Zhong, X., Jen, A.K.Y.: All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Adv. Funct. Mater. 31, 2100090 (2020)
CrossRef Google scholar
[24]
Wang, Y., Yuan, J.Y., Zhang, X.L., Ling, X.F., Larson, B.W., Zhao, Q., Yang, Y.G., Shi, Y., Luther, J.M., Ma, W.L.: Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, 2000449 (2020)
CrossRef Google scholar
[25]
Chen, J.X., Jia, D.L., Qiu, J.M., Zhuang, R.S., Hua, Y., Zhang, X.L.: Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 96, 107140 (2022)
CrossRef Google scholar
[26]
Yuan, J., Ling, X., Yang, D., Li, F., Zhou, S., Shi, J., Qian, Y., Hu, J., Sun, Y., Yang, Y., Gao, X., Duhm, S., Zhang, Q., Ma, W.: Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule. 2, 2450–2463 (2018)
CrossRef Google scholar
[27]
Zhao, Q., Hazarika, A., Chen, X., Harvey, S.P., Larson, B.W., Teeter, G.R., Liu, J., Song, T., Xiao, C., Shaw, L., Zhang, M., Li, G., Beard, M.C., Luther, J.M.: High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019)
CrossRef Google scholar
[28]
Chen, K., Jin, W., Zhang, Y., Yang, T., Reiss, P., Zhong, Q., Bach, U., Li, Q., Wang, Y., Zhang, H., Bao, Q., Liu, Y.: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)
CrossRef Google scholar
[29]
Hu, L., Zhao, Q., Huang, S., Zheng, J., Guan, X., Patterson, R., Kim, J., Shi, L., Lin, C.H., Lei, Q., Chu, D., Tao, W., Cheong, S., Tilley, R.D., Ho-Baillie, A.W.Y., Luther, J.M., Yuan, J., Wu, T.: Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021)
CrossRef Google scholar
[30]
Hao, M., Bai, Y., Zeiske, S., Ren, L., Liu, J., Yuan, Y., Zarrabi, N., Cheng, N., Ghasemi, M., Chen, P., Lyu, M., He, D., Yun, J.-H., Du, Y., Wang, Y., Ding, S., Armin, A., Meredith, P., Liu, G., Cheng, H.-M., Wang, L.: Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020)
CrossRef Google scholar
[31]
Xue, J., Lee, J.-W., Dai, Z., Wang, R., Nuryyeva, S., Liao, M.E., Chang, S.-Y., Meng, L., Meng, D., Sun, P., Lin, O., Goorsky, M.S., Yang, Y.: Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule. 2, 1866–1878 (2018)
CrossRef Google scholar
[32]
Xue, J., Wang, R., Chen, L., Nuryyeva, S., Han, T.H., Huang, T., Tan, S., Zhu, J., Wang, M., Wang, Z.K., Zhang, C., Lee, J.W., Yang, Y.: A small-molecule, „charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, e1900111 (2019)
CrossRef Google scholar
[33]
Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y., Ma, W.: Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. Acs Energy Lett. 4, 2571–2578 (2019)
CrossRef Google scholar
[34]
Ji, K., Yuan, J.B., Li, F.C., Shi, Y., Ling, X.F., Zhang, X.L., Zhang, Y.N., Lu, H.Y., Yuan, J.Y., Ma, W.L.: High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020)
CrossRef Google scholar
[35]
Ling, X., Yuan, J., Zhang, X., Qian, Y., Zakeeruddin, S.M., Larson, B.W., Zhao, Q., Shi, J., Yang, J., Ji, K., Zhang, Y., Wang, Y., Zhang, C., Duhm, S., Luther, J.M., Gratzel, M., Ma, W.: Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, e2001906 (2020)
CrossRef Google scholar
[36]
Protesescu, L., Yakunin, S., Kumar, S., Bar, J., Bertolotti, F., Masciocchi, N., Guagliardi, A., Grotevent, M., Shorubalko, I., Bodnarchuk, M.I., Shih, C.J., Kovalenko, M.V.: Dismantling the „Red Wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)
CrossRef Google scholar
[37]
Qiu, J., Zhou, Q., Jia, D., Wang, Y., Li, S., Zhang, X.: Robust molecular-dipole-induced surface functionalization of inorganic perovskites for efficient solar cells. J. Mater. Chem. A 10, 1821–1830 (2022)
CrossRef Google scholar
[38]
El-Ballouli, A.O., Bakr, O.M., Mohammeed, O.F.: Compositional, processing, and interfacial engineering of nanocrystal- and quantum- dot-based perovskite solar cells. Chem. Mater. 31, 6387–6411 (2019)
CrossRef Google scholar
[39]
Hazarika, A., Zhao, Q., Gaulding, E.A., Christians, J.A., Dou, B., Marshall, A.R., Moot, T., Berry, J.J., Johnson, J.C., Luther, J.M.: Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of a-site cation composition. ACS Nano 12, 10327–10337 (2018)
CrossRef Google scholar
[40]
Levchuk, I., Osvet, A., Tang, X., Brandl, M., Perea, J.D., Hoegl, F., Matt, G.J., Hock, R., Batentschuk, M., Brabec, C.J.: Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017)
CrossRef Google scholar
[41]
Lu, H., Liu, Y., Ahlawat, P., Mishra, A., Tress, W.R., Eickemeyer, F.T., Yang, Y., Fu, F., Wang, Z., Avalos, C.E., Carlsen, B.I., Agarwalla, A., Zhang, X., Li, X., Zhan, Y., Zakeeruddin, S.M., Emsley, L., Rothlisberger, U., Zheng, L., Hagfeldt, A., Gratzel, M.: Vaporassisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science (2020)
CrossRef Google scholar
[42]
Rothmann, M.U., Kim, J.S., Borchert, J., Lohmann, K.B., O’Leary, C.M., Sheader, A.A., Clark, L., Snaith, H.J., Johnston, M.B., Nellist, P.D., Herz, L.M.: Atomic-scale microstructure of metal halide perovskite. Science 370, 548 (2020)
CrossRef Google scholar
[43]
Jia, D., Chen, J., Qiu, J., Ma, H., Yu, M., Liu, J., Zhang, X.: Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule. 6, 1632–1653 (2022)
CrossRef Google scholar
[44]
Imran, M., Caligiuri, V., Wang, M., Goldoni, L., Prato, M., Krahne, R., De Trizio, L., Manna, L.: Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018)
CrossRef Google scholar
[45]
Huang, H., Li, Y., Tong, Y., Yao, E.P., Feil, M.W., Richter, A.F., Doblinger, M., Rogach, A.L., Feldmann, J., Polavarapu, L.: Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shapecontrolled synthesis. Angew. Chem. Int. Ed. 58, 16558–16562 (2019)
CrossRef Google scholar
[46]
Ling, X.F., Zhou, S.J., Yuan, J.Y., Shi, J.W., Qian, Y.L., Larson, B.W., Zhao, Q., Qin, C.C., Li, F.C., Shi, G.Z., Stewart, C., Hu, J.X., Zhang, X.L., Luther, J.M., Duhm, S., Ma, W.L.: 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)
CrossRef Google scholar
[47]
Kim, J., Koo, B., Kim, W.H., Choi, J., Choi, C., Lim, S.J., Lee, J.S., Kim, D.H., Ko, M.J., Kim, Y.: Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy 66, 104130 (2019)
CrossRef Google scholar
[48]
Kim, J., Cho, S., Dinic, F., Choi, J., Choi, C., Jeong, S.M., Lee, J.S., Voznyy, O., Ko, M.J., Kim, Y.: Hydrophobic stabilizeranchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy 75, 104985 (2020)
CrossRef Google scholar
[49]
Jia, D., Chen, J., Yu, M., Liu, J., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 16, e2001772 (2020)
CrossRef Google scholar
[50]
Liu, T., Guo, J., Lu, D., Xu, Z., Fu, Q., Zheng, N., Xie, Z., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021)
CrossRef Google scholar
[51]
Li, Q., Dong, Y., Lv, G., Liu, T., Lu, D., Zheng, N., Dong, X., Xu, Z., Xie, Z., Liu, Y.: Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden-popper perovskite solar cells. Acs Energy Lett. 6, 2072–2080 (2021)
CrossRef Google scholar
[52]
Yoon, Y.J., Lee, K.T., Lee, T.K., Kim, S.H., Shin, Y.S., Walker, B., Park, S.Y., Heo, J., Lee, J., Kwak, S.K., Kim, G.H., Kim, J.Y.: Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule. 2, 2105–2116 (2018)
CrossRef Google scholar
[53]
Suri, M., Hazarika, A., Larson, B.W., Zhao, Q., Vallés-Pelarda, M., Siegler, T.D., Abney, M.K., Ferguson, A.J., Korgel, B.A., Luther, J.M.: Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. Acs Energy Lett. 4, 1954–1960 (2019)
CrossRef Google scholar
[54]
Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C., Huang, J.: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)
CrossRef Google scholar
[55]
Wang, Q., Jin, Z., Chen, D., Bai, D., Bian, H., Sun, J., Zhu, G., Wang, G., Liu, S.F.: µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater. 8, 1800007 (2018)
CrossRef Google scholar
[56]
Zhou, Q., Qiu, J., Wang, Y., Yu, M., Liu, J., Zhang, X.: Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. Acs Energy Lett. 6, 1596–1606 (2021)
CrossRef Google scholar
[57]
Jia, D.L., Chen, J.X., Zheng, S.Y., Phuyal, D., Yu, M., Tian, L., Liu, J.H., Karis, O., Rensmo, H., Johansson, E.M.J., Zhang, X.: Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 9, 1902809 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(3822 KB)

Accesses

Citations

Detail

Sections
Recommended

/