Copper-based metal halides for X-ray and photodetection
Fu Qiu, Yutian Lei, Zhiwen Jin
Copper-based metal halides for X-ray and photodetection
Copper-based metal halides have become important materials in the field of X-ray and photodetection due to their excellent optical properties, good environmental stability and low toxicity. This review presents the progress of research on crystal structure/morphology, photophysics/optical properties and applications of copper-based metal halides. We also discuss the challenges of copper-based metal halides with a perspective of their future research directions.
Copper-based metal halides / X-ray detector / Photodetectors / Scintillators
[1] |
Liang, J., Liu, J., Jin, Z.: All-inorganic halide perovskites for optoelectronics: progress and prospects. Solar RRL 1(10), 1700086(2017)
CrossRef
Google scholar
|
[2] |
Xiang, W., Tress, W.: Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv. Mater. 31(44), e1902851 (2019)
CrossRef
Google scholar
|
[3] |
Chen, W., Li, X., Li, Y., Li, Y.: A review: Crystal growth for highperformance all-inorganic perovskite solar cells. Energy Environ. Sci. 13(7), 1971–1996 (2020)
CrossRef
Google scholar
|
[4] |
Yuan, J., Hazarika, A., Zhao, Q., Ling, X., Moot, T., Ma, W., Luther, J.M.: Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4(6), 1160–1185 (2020)
CrossRef
Google scholar
|
[5] |
Liu, P., Han, N., Wang, W., Ran, R., Zhou, W., Shao, Z.: High-quality ruddlesden-popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33(10), e2002582 (2021)
CrossRef
Google scholar
|
[6] |
Park, N.G.: Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015)
CrossRef
Google scholar
|
[7] |
Leijtens, T., Bush, K.A., Prasanna, R., Mcgehee, M.D.: Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018)
CrossRef
Google scholar
|
[8] |
Wu, T., Qin, Z., Wang, Y., Wu, Y., Chen, W., Zhang, S., Cai, M., Dai, S., Zhang, J., Liu, J., Zhou, Z., Liu, X., Segawa, H., Tan, H., Tang, Q., Fang, J., Li, Y., Ding, L., Ning, Z., Qi, Y., Zhang, Y., Han, L.: The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152(2021)
CrossRef
Google scholar
|
[9] |
Li, B., Li, Z., Wu, X., Zhu, Z.: Interface functionalization in inverted perovskite solar cells: from material perspective. Nano Res Energy 1, e9120011 (2022)
CrossRef
Google scholar
|
[10] |
Tan, Z.K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)
CrossRef
Google scholar
|
[11] |
Liu, M., Wan, Q., Wang, H., Carulli, F., Sun, X., Zheng, W., Kong, L., Zhang, Q., Zhang, C., Zhang, Q., Brovelli, S., Li, L.: Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15(5), 379–385 (2021)
CrossRef
Google scholar
|
[12] |
Ji, K., Anaya, M., Abfalterer, A., Stranks, S.D.: Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 9(18), 2002128(2021)
CrossRef
Google scholar
|
[13] |
Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W.H., Li, G., Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404(2014)
CrossRef
Google scholar
|
[14] |
Ramasamy, P., Lim, D.H., Kim, B., Lee, S.H., Lee, M.S., Lee, J.S.: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. (Camb.) 52(10), 2067–2070 (2016)
CrossRef
Google scholar
|
[15] |
Wang, H.P., Li, S., Liu, X., Shi, Z., Fang, X., He, J.H.: Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33(7), e2003309 (2021)
CrossRef
Google scholar
|
[16] |
Li, Z., Peng, G., Chen, H., Shi, C., Li, Z., Jin, Z.: Metal-free PAZE-NH4X3·H2O perovskite for flexible transparent X-ray detection and imaging. Angew. Chem. Int. Ed. 61(36), 202207198(2022)
CrossRef
Google scholar
|
[17] |
Chen, Q., Wu, J., Ou, X., Huang, B., Almutlaq, J., Zhumekenov, A.A., Guan, X., Han, S., Liang, L., Yi, Z., Li, J., Xie, X., Wang, Y., Li, Y., Fan, D., Teh, D.B.L., All, A.H., Mohammed, O.F., Bakr, O.M., Wu, T., Bettinelli, M., Yang, H., Huang, W., Liu, X.: All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018)
CrossRef
Google scholar
|
[18] |
Cao, F., Yu, D., Ma, W., Xu, X., Cai, B., Yang, Y.M., Liu, S., He, L., Ke, Y., Lan, S., Choy, K.L., Zeng, H.: Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14(5), 5183–5193 (2020)
CrossRef
Google scholar
|
[19] |
Zhu, W., Ma, W., Su, Y., Chen, Z., Chen, X., Ma, Y., Bai, L., Xiao, W., Liu, T., Zhu, H., Liu, X., Liu, H., Liu, X., Yang, Y.M.: Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl. 9(1), 112(2020)
CrossRef
Google scholar
|
[20] |
Chen, H., Wang, Q., Peng, G., Wang, S., Lei, Y., Wang, H., Yang, Z., Sun, J., Li, N., Zhao, L., Lan, W., Jin, Z.: Cesium lead halide nanocrystals based flexible X-ray imaging screen and visible dose rate indication on paper substrate. Adv. Opt. Mater. 10(8), 2102790(2022)
CrossRef
Google scholar
|
[21] |
Dong, H., Zhang, C., Liu, X., Yao, J., Zhao, Y.S.: Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49(3), 951–982 (2020)
CrossRef
Google scholar
|
[22] |
Zhang, Q., Shang, Q., Su, R., Do, T.T.H., Xiong, Q.: Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett. 21(5), 1903–1914 (2021)
CrossRef
Google scholar
|
[23] |
Li, Z., Zhou, F., Yao, H., Ci, Z., Yang, Z., Jin, Z.: Halide perovskites for high-performance X-ray detector. Mater. Today 48, 155–175 (2021)
CrossRef
Google scholar
|
[24] |
Zhou, F., Li, Z., Lan, W., Wang, Q., Ding, L., Jin, Z.: Halide perovskite, a potential scintillator for X-ray detection. Small Methods 4(10), 2000506(2020)
CrossRef
Google scholar
|
[25] |
Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., Sherburne, M., Li, S., Asta, M., Mathews, N., Mhaisalkar, S.G.: Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A Mater. Energy Sustain. 3(47), 23829–23832 (2015)
CrossRef
Google scholar
|
[26] |
Yu, B.B., Chen, Z., Zhu, Y., Wang, Y., Han, B., Chen, G., Zhang, X., Du, Z., He, Z.: Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), e2102055 (2021)
CrossRef
Google scholar
|
[27] |
Jiang, F., Yang, D., Jiang, Y., Liu, T., Zhao, X., Ming, Y., Luo, B., Qin, F., Fan, J., Han, H., Zhang, L., Zhou, Y.: Chlorine-incor-poration- induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018)
CrossRef
Google scholar
|
[28] |
Leng, M., Yang, Y., Zeng, K., Chen, Z., Tan, Z., Li, S., Li, J., Xu, B., Li, D., Hautzinger, M.P., Fu, Y., Zhai, T., Xu, L., Niu, G., Jin, S., Tang, J.: All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 28(1), 1704446(2018)
CrossRef
Google scholar
|
[29] |
Li, M., Li, F., Gong, J., Zhang, T., Gao, F., Zhang, W.H., Liu, M.: Advances in TiN(II)-based perovskite solar cells: from material physics to device performance. Small Struct. 3(1), 2100102(2022)
CrossRef
Google scholar
|
[30] |
Tang, Y., Tang, S., Luo, M., Guo, Y., Zheng, Y., Lou, Y., Zhao, Y.: All-inorganic lead-free metal halide perovskite quantum dots: progress and prospects. Chem. Commun. (Camb.) 57(61), 7465–7479 (2021)
CrossRef
Google scholar
|
[31] |
Jun, T., Sim, K., Iimura, S., Sasase, M., Kamioka, H., Kim, J., Hosono, H.: Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30(43), e1804547 (2018)
CrossRef
Google scholar
|
[32] |
Cao, L., Liu, X., Li, Y., Li, X., Du, L., Chen, S., Zhao, S., Wang, C.: Recent progress in all-inorganic metal halide nanostructured perovskites: materials design, optical properties, and application. Front. Phys. 16(3), 33201(2021)
CrossRef
Google scholar
|
[33] |
Hull, S., Berastegui, P.: Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides—II: ordered phases within the (AgX)x(MX)1–x and (CuX)x(MX)1–x (M=K, Rb and Cs; X=Cl, Br and I) systems. J. Solid State Chem. 177(9), 3156–3173 (2004)
CrossRef
Google scholar
|
[34] |
Li, Y., Zhou, Z., Tewari, N., Ng, M., Geng, P., Chen, D., Ko, P.K., Qammar, M., Guo, L., Halpert, J.E.: Progress in copper metal halides for optoelectronic applications. Mater. Chem. Front. 5(13), 4796–4820 (2021)
CrossRef
Google scholar
|
[35] |
Grandhi, G.K., Viswanath, N.S.M., Cho, H.B., Han, J.H., Kim, S.M., Choi, S., Im, W.B.: Mechanochemistry as a green route: Synthesis, thermal stability, and postsynthetic reversible phase transformation of highly-luminescent cesium copper halides. J. Phys. Chem. Lett. 11(18), 7723–7729 (2020)
CrossRef
Google scholar
|
[36] |
Lin, R., Guo, Q., Zhu, Q., Zhu, Y., Zheng, W., Huang, F.: All-inorganic CsCu2I3 single crystal with high-PLQY (approximately 15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater. 31(46), e1905079 (2019)
CrossRef
Google scholar
|
[37] |
Yang, B., Yin, L., Niu, G., Yuan, J.H., Xue, K.H., Tan, Z., Miao, X.S., Niu, M., Du, X., Song, H., Lifshitz, E., Tang, J.: Lead-free halide Rb2CuBr 3 as sensitive X-ray scintillator. Adv. Mater. 31(44), e1904711 (2019)
CrossRef
Google scholar
|
[38] |
Sun, X.J., Xia, M.L., Xu, Y.S., Tang, J., Niu, G.D.: Research progress of perovskite direct X-ray imaging. Chinese J. Luminescence 43(7), 1014–1026 (2022)
CrossRef
Google scholar
|
[39] |
Xu, Y., Li, Y., Wang, Q., Chen, H., Lei, Y., Feng, X., Ci, Z., Jin, Z.: Two-dimensional BA2PbBr 4-based wafer for X-rays imaging application. Mater. Chem. Front. 6(10), 1310–1316 (2022)
CrossRef
Google scholar
|
[40] |
Zeng, J., Bi, L., Cheng, Y., Xu, B., Jen, A.K.Y.: Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res Energy 1, e9120004 (2022)
CrossRef
Google scholar
|
[41] |
Zhang, F., Zhao, Z., Chen, B., Zheng, H., Huang, L., Liu, Y., Wang, Y., Rogach, A.L.: Strongly emissive lead-free 0D Cs3Cu2I5 perovskites synthesized by a room temperature solvent evaporation crystallization for down-conversion light-emitting devices and fluorescent inks. Adv. Opt. Mater. 8(8), 1901723(2020)
CrossRef
Google scholar
|
[42] |
Lin, R., Zhu, Q., Guo, Q., Zhu, Y., Zheng, W., Huang, F.: Dual self-trapped exciton emission with ultrahigh photoluminescence quantum yield in CsCu2I3 and Cs3Cu2I5 perovskite single crystals. J. Phys. Chem. C 124(37), 20469–20476 (2020)
CrossRef
Google scholar
|
[43] |
Zhou, Z., Li, Y., Xing, Z., Sung, H.H.Y., Williams, I.D., Li, Z., Wong, K.S., Halpert, J.E.: Rapid synthesis of bright, shape-controlled, large single crystals of Cs3Cu2X5 for phase pure single (X=Br, Cl) and mixed halides (X=Br, Cl) as the blue and green components for printable white light-emitting devices. Adv. Mater. Interfaces 8(20), 2101471(2021)
CrossRef
Google scholar
|
[44] |
Mo, X., Li, T., Huang, F., Li, Z., Zhou, Y., Lin, T., Ouyang, Y., Tao, X., Pan, C.: Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy 81, 105570(2021)
CrossRef
Google scholar
|
[45] |
Zhao, X., Niu, G., Zhu, J., Yang, B., Yuan, J.H., Li, S., Gao, W., Hu, Q., Yin, L., Xue, K.H., Lifshitz, E., Miao, X., Tang, J.: Allinorganic copper halide as a stable and self-absorption-free X-ray scintillator. J. Phys. Chem. Lett. 11(5), 1873–1880 (2020)
CrossRef
Google scholar
|
[46] |
Yang, J., Kang, W., Liu, Z., Pi, M., Luo, L.B., Li, C., Lin, H., Luo, Z., Du, J., Zhou, M., Tang, X.: High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability. J. Phys. Chem. Lett. 11(16), 6880–6886 (2020)
CrossRef
Google scholar
|
[47] |
Ma, Z., Shi, Z., Qin, C., Cui, M., Yang, D., Wang, X., Wang, L., Ji, X., Chen, X., Sun, J., Wu, D., Zhang, Y., Li, X.J., Zhang, L., Shan, C.: Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 14(4), 4475–4486 (2020)
CrossRef
Google scholar
|
[48] |
Roccanova, R., Yangui, A., Nhalil, H., Shi, H., Du, M.H., Saparov, B.: Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5?xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 1(3), 269–274 (2019)
CrossRef
Google scholar
|
[49] |
Xie, L., Chen, B., Zhang, F., Zhao, Z., Wang, X., Shi, L., Liu, Y., Huang, L., Liu, R., Zou, B., Wang, Y.: Highly luminescent and stable lead-free cesium copper halide perovskite powders for UVpumped phosphor-converted light-emitting diodes. Photon. Res. 8(6), 768–775 (2020)
CrossRef
Google scholar
|
[50] |
Cheng, P., Sun, L., Feng, L., Yang, S., Yang, Y., Zheng, D., Zhao, Y., Sang, Y., Zhang, R., Wei, D., Deng, W., Han, K.: Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew. Chem. Int. Ed. 58(45), 16087–16091 (2019)
CrossRef
Google scholar
|
[51] |
Li, Y., Vashishtha, P., Zhou, Z., Li, Z., Shivarudraiah, S.B., Ma, C., Liu, J., Wong, K.S., Su, H., Halpert, J.E.: Room temperature synthesis of stable, printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X = Cl). Chem. Mater. 32(13), 5515–5524 (2020)
CrossRef
Google scholar
|
[52] |
Luo, Z., Li, Q., Zhang, L., Wu, X., Tan, L., Zou, C., Liu, Y., Quan, Z.: 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties. Small 16(3), e1905226 (2020)
CrossRef
Google scholar
|
[53] |
Zhao, S., Chen, C., Cai, W., Li, R., Li, H., Jiang, S., Liu, M., Zang, Z.: Efficiently luminescent and stable lead-free Cs3Cu2Cl5@ silica nanocrystals for white light-emitting diodes and communication. Adv. Opt. Mater. 9(13), 2100307(2021)
CrossRef
Google scholar
|
[54] |
Zhang, R., Mao, X., Zheng, D., Yang, Y., Yang, S., Han, K.: A lead-free all-inorganic metal halide with near-unity green luminescence. Laser Photonics Rev. 14(5), 2000027(2020)
CrossRef
Google scholar
|
[55] |
Han, L., Sun, B., Guo, C., Peng, G., Chen, H., Yang, Z., Li, N., Ci, Z., Jin, Z.: Photophysics in zero-dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-ray detection. Adv. Opt. Mater. 10(6), 2102453(2022)
CrossRef
Google scholar
|
[56] |
Zhang, B., Wu, X., Zhou, S., Liang, G., Hu, Q.: Self-trapped exciton emission in inorganic copper(I) metal halides. Front Optoelectron. 14(4), 459–472 (2021)
CrossRef
Google scholar
|
[57] |
Du, M.H.: Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Lett. 5(2), 464–469 (2020)
CrossRef
Google scholar
|
[58] |
Zhang, Z.X., Li, C., Lu, Y., Tong, X.W., Liang, F.X., Zhao, X.Y., Wu, D., Xie, C., Luo, L.B.: Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 10(18), 5343–5350 (2019)
CrossRef
Google scholar
|
[59] |
Li, Y., Shi, Z., Liang, W., Wang, L., Li, S., Zhang, F., Ma, Z., Wang, Y., Tian, Y., Wu, D., Li, X., Zhang, Y., Shan, C., Fang, X.: Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Mater. Horiz. 7(2), 530–540 (2020)
CrossRef
Google scholar
|
[60] |
Li, Y., Shi, Z., Wang, L., Chen, Y., Liang, W., Wu, D., Li, X., Zhang, Y., Shan, C., Fang, X.: Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 7(6), 1613–1622 (2020)
CrossRef
Google scholar
|
[61] |
Ma, J., Xia, X., Yan, S., Li, Y., Liang, W., Yan, J., Chen, X., Wu, D., Li, X., Shi, Z.: Stable and self-powered solar-blind ultraviolet photodetectors based on a Cs3Cu2I5/β-Ga2O3 heterojunction prepared by dual-source vapor codeposition. ACS Appl. Mater. Interfaces 13(13), 15409–15419 (2021)
CrossRef
Google scholar
|
[62] |
Zhang, M., Zhu, J., Yang, B., Niu, G., Wu, H., Zhao, X., Yin, L., Jin, T., Liang, X., Tang, J.: Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Lett. 21(3), 1392–1399 (2021)
CrossRef
Google scholar
|
[63] |
Zhao, X., Jin, T., Gao, W., Niu, G., Zhu, J., Song, B., Luo, J., Pan, W., Wu, H., Zhang, M., He, X., Fu, L., Li, Z., Zhao, H., Tang, J.: Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-ray imaging. Adv. Opt. Mater. 9(24), 2101194(2021)
CrossRef
Google scholar
|
[64] |
Zhou, Q., Ren, J., Xiao, J., Lei, L., Liao, F., Di, H., Wang, C., Yang, L., Chen, Q., Yang, X., Zhao, Y., Han, X.: Highly efficient copper halide scintillators for high-performance and dynamic X-ray imaging. Nanoscale 13(47), 19894–19902 (2021)
CrossRef
Google scholar
|
[65] |
Wang, Q., Zhou, Q., Nikl, M., Xiao, J., Kucerkova, R., Beitlerova, A., Babin, V., Prusa, P., Linhart, V., Wang, J., Wen, X., Niu, G., Tang, J., Ren, G., Wu, Y.: Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2Cl5 single crystal scintillator. Adv. Opt. Mater. 10(11), 2200304(2022)
CrossRef
Google scholar
|
[66] |
Li, X., Chen, J., Yang, D., Chen, X., Geng, D., Jiang, L., Wu, Y., Meng, C., Zeng, H.: Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nat. Commun. 12(1), 3879(2021)
CrossRef
Google scholar
|
[67] |
Cheng, S., Nikl, M., Beitlerova, A., Kucerkova, R., Du, X., Niu, G., Jia, Y., Tang, J., Ren, G., Wu, Y.: Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 9(13), 2100460(2021)
CrossRef
Google scholar
|
/
〈 | 〉 |