Dark current modeling of thick perovskite X-ray detectors

Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu

PDF(1477 KB)
PDF(1477 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (4) : 43. DOI: 10.1007/s12200-022-00044-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dark current modeling of thick perovskite X-ray detectors

Author information +
History +

Abstract

Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10?9 A/cm2 for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (JT) and the generation-recombination current (Jg-r). The typical observed failures of p–n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.

Graphical abstract

Keywords

Perovskite / X-ray detection / Dark current / Semiconductor simulation / Junction device

Cite this article

Download citation ▾
Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu. Dark current modeling of thick perovskite X-ray detectors. Front. Optoelectron., 2022, 15(4): 43 https://doi.org/10.1007/s12200-022-00044-1

References

[1]
Wei, H., Huang, J.: Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10(1), 1066(2019)
CrossRef Google scholar
[2]
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)
CrossRef Google scholar
[3]
Yin, W., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903(2014)
CrossRef Google scholar
[4]
Arquer, F., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100(2017)
CrossRef Google scholar
[5]
Wei, W., Zhang, Y., Xu, Q., Wei, H., Fang, Y., Wang, Q., Deng, Y., Li, T., Gruverman, A., Cao, L., Huang, J.: Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11(5), 315–321 (2017)
CrossRef Google scholar
[6]
Wang, X., Zhao, D., Qiu, Y., Huang, Y., Wu, Y., Li, G., Huang, Q., Khan, Q., Nathan, A., Lei, W., Chen, J.: PIN diodes array made of perovskite single crystal for X-Ray imaging. Phys. Status Solidi RRL 12(10), 1800380(2018)
CrossRef Google scholar
[7]
Pan, W., Yang, B., Niu, G., Xue, K., Du, X., Yin, L., Zhang, M., Wu, H., Miao, X., Tang, J.: Hot-pressed CsPbBr3 quasimonocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31(44), 1904405(2019)
CrossRef Google scholar
[8]
Huang, Y., Qiao, L., Jiang, Y., He, T., Long, R., Yang, F., Wang, L., Lei, X., Yuan, M., Chen, J.: A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem. Int. Ed. 58(49), 17834–17842 (2019)
CrossRef Google scholar
[9]
Zhang, Y., Liu, Y., Xu, Z., Ye, H., Yang, Z., You, J., Liu, M., He, Y., Kanatzidis, M.G., Liu, S.: Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11(1), 2304(2020)
CrossRef Google scholar
[10]
Hu, M., Jia, S., Liu, Y., Cui, J., Zhang, Y., Su, H., Cao, S., Mo, L., Chu, D., Zhao, G., Zhao, K., Yang, Z., Liu, S.: Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces 12(14), 16592–16600 (2020)
CrossRef Google scholar
[11]
Peng, J., Xia, C.Q., Xu, Y., Li, R., Cui, L., Clegg, J.K., Herz, L.M., Johnston, M.B., Lin, Q.: Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 12(1), 1531(2021)
CrossRef Google scholar
[12]
Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H., Wang, C., Ecker, B.R., Gao, Y., Loi, M.A., Cao, L., Huang, J.: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10(5), 333–339 (2016)
CrossRef Google scholar
[13]
He, Y., Hadar, I., Kanatzidis, M.G.: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16(1), 14–26 (2021)
CrossRef Google scholar
[14]
Huang, H., Abbaszadeh, S.: Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20(4), 1694–1704 (2020)
CrossRef Google scholar
[15]
Szeles, C.: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi 241(3), 783–790 (2004)
CrossRef Google scholar
[16]
Kasap, S.O., Rowlands, J.A.: Photoconductor selection for digital flat panel X-ray image detectors based on the dark current. J. Vac. Sci. Technol. A 18(2), 615–620 (2000)
CrossRef Google scholar
[17]
Zhao, W., Rowlands, J.A.: X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. J. Med. Phys. 22(10), 1595–1604 (1995)
CrossRef Google scholar
[18]
Fang, Y., Huang, J.: Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27(17), 2804–2810 (2015)
CrossRef Google scholar
[19]
Euvrard, J., Yan, Y., Mitzi, D.B.: Electrical doping in halide perovskites. Nat. Rev. Mater. 6(6), 531–549 (2021)
CrossRef Google scholar
[20]
Nayak, P.K., Sendner, M., Wenger, B., Wang, Z., Sharma, K., Ramadan, A.J., Lovrinčić, R., Pucci, A., Madhu, P.K., Snaith, H.J.: Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140(2), 574–577 (2018)
CrossRef Google scholar
[21]
Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 2761(2013)
CrossRef Google scholar
[22]
Tan, Z., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., Friend, R.H.: right light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)
CrossRef Google scholar
[23]
Dou, L., Yang, Y., You, J., Hong, Z., Chang, W., Li, G., Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404(2014)
CrossRef Google scholar
[24]
Stranks, S.D., Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391–402 (2015)
CrossRef Google scholar
[25]
He, Y., Ke, W., Alexander, G.C.B., McCall, K.M., Chica, D.G., Liu, Z., Hadar, I., Stoumpos, C.C., Wessels, B.W., Kanatzidis, M.G.: Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5(10), 4132–4138 (2018)
CrossRef Google scholar
[26]
He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B.W., Wasielewski, M.R., Dravid, V.P., Burger, A., Kanatzidis, M.G.: High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9(1), 1609(2018)
CrossRef Google scholar
[27]
He, Y., Petryk, M., Liu, Z., Chica, D.G., Hadar, I., Leak, C., Ke, W., Spanopoulos, I., Lin, W., Chung, D.Y., Wessels, B.W., He, Z., Kanatzidis, M.G.: CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15(1), 36–42 (2021)
CrossRef Google scholar
[28]
Peng, J., Ye, K., Xu, Y., Cui, L., Li, R., Peng, H., Lin, Q.: X-ray detection based on crushed perovskite crystal/polymer composites. Composites Sens. Actuators A 312, 112132(2020)
CrossRef Google scholar
[29]
Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Savenije, T.J., Cao, L., Huang, J.: Dopant compensation in alloyed CH3NH3PbBr3?xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16(8), 826–833 (2017)
CrossRef Google scholar
[30]
Kim, Y.C., Kim, K.H., Son, D., Jeong, D., Seo, J., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
CrossRef Google scholar
[31]
Zhou, Y., Zhao, L., Ni, Z., Zhao, J., Xiao, X., Huang, J.: Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. 7(36), 6716(2021)
CrossRef Google scholar
[32]
Xu, Y., Jiao, B., Song, T., Stoumpos, C.C., He, Y., Hadar, I., Lin, W., Jie, W., Kanatzidis, M.G.: Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6(1), 196–203 (2018)
CrossRef Google scholar
[33]
Thompson, M., Ellison, S.L.R., Wood, R.: Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74(5), 835–855 (2002)
CrossRef Google scholar
[34]
El-Gabaly, M., Nigrin, J., Goud, P.A.: Stationary charge transport in metal-semiconductor-metal (MSM) structures. J. Appl. Phys. 44(10), 4672–4680 (1973)
CrossRef Google scholar
[35]
Sze, S.M., Ng, K.K.: Physics of semiconductor devices, 3rd ed. Hoboken: John Wiley & Sons, 80-88, 166–169 (2006)
[36]
Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high-dielectric-constant perovskiterelated oxide. Science 293(5530), 673–676 (2001)
CrossRef Google scholar
[37]
Ni, Z., Bao, C., Liu, Y., Jiang, Q., Wu, W., Chen, S., Dai, X., Chen, B., Hartweg, B., Yu, Z., Holman, Z., Huang, J.: Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020)
CrossRef Google scholar
[38]
Wu, C.Y.: Interfacial layer-thermionic-diffusion theory for the Schottky barrier diode. J. Appl. Phys. 53(8), 5947–5950 (1982)
CrossRef Google scholar
[39]
Colinge, J.P., Colinge, C.A.: Physics of semiconductor devices. Springer Science & Business Media, Berlin (2005)
[40]
Ollearo, R., Wang, J., Dyson, M.J., Weijtens, C.H.L., Fattori, M., van Gorkom, B.T., van Breemen, A.J.J.M., Meskers, S.C.J., Janssen, R.A.J., Gelinck, G.H.: Ultralow dark current in nearinfrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12(1), 7277(2021)
CrossRef Google scholar
[41]
Jiang, Q., Zhang, X., You, J.: SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154(2018)
CrossRef Google scholar
[42]
Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013)
CrossRef Google scholar
[43]
Raoui, Y., Ez-Zahraouy, H., Tahiri, N., Bounagui, O.E., Ahmad, S., Kazim, S.: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy 193, 948–955 (2019)
CrossRef Google scholar
[44]
Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)
CrossRef Google scholar
[45]
Shukl, V., Panda, G.: The performance study of CdTe/CdS/SnO2 solar cell. Mater. Today Proc. 26, 487–491 (2020)
CrossRef Google scholar
[46]
Xia, M., Song, Z., Wu, H., Du, X., He, X., Pang, J., Luo, H., Jin, L., Li, G., Niu, G., Tang, J.: Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729(2022)
CrossRef Google scholar
[47]
Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 0747–0750 (2016)
CrossRef Google scholar
[48]
Deumel, S., van Breemen, A., Gelinck, G., Peeters, B., Maas, J., Verbeek, R., Shanmugam, S., Akkerman, H., Meulenkamp, E., Huerdler, J.E., Acharya, M., Batlle, M.G., Almora, O., Guerrero, A., Belmonte, G.G., Heiss, W., Schmidt, O., Tedde, S.F.: High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
CrossRef Google scholar
[49]
Hunter, D.M., Belev, G., Kasap, S., Yaffe, M.J.: Measured and calculated K-fluorescence effects on the MTF of an amorphousselenium based CCD X-ray detector. Med. Phys. 39, 608–622 (2012)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1477 KB)

Accesses

Citations

Detail

Sections
Recommended

/