Front. Mech. Eng. All Journals

Collections AI Mindmap AI Analyzer

Automotive Design and Manufacture Technologies
The main objective of this Special Column is to bring together the new and innovative ideas, experiences and research results from researchers and practitioners on all aspects of Automotive Design and Manufacture Technologies.
Publication years
Article types
  • Select all
  • RESEARCH ARTICLE
    A new modeling approach for stress–strain relationship taking into account strain hardening and stored energy by compacted graphite iron evolution
    Jiahui NIU, Chuanzhen HUANG, Zhenyu SHI, Hanlian LIU, Zhengyi TANG, Binghao LI, Zhen CHEN, Guoyan JIANG
    Frontiers of Mechanical Engineering, 2023, 18(4): 45. https://doi.org/10.1007/s11465-023-0761-3

    Compacted graphite iron (CGI) is considered to be an ideal diesel engine material with excellent physical and mechanical properties, which meet the requirements of energy conservation and emission reduction. However, knowledge of the microstructure evolution of CGI and its impact on flow stress remains limited. In this study, a new modeling approach for the stress–strain relationship is proposed by considering the strain hardening effect and stored energy caused by the microstructure evolution of CGI. The effects of strain, strain rate, and deformation temperature on the microstructure of CGI during compression deformation are examined, including the evolution of graphite morphology and the microstructure of the pearlite matrix. The roundness and fractal dimension of graphite particles under different deformation conditions are measured. Combined with finite element simulation models, the influence of graphite particles on the flow stress of CGI is determined. The distributions of grain boundary and geometrically necessary dislocations (GNDs) density in the pearlite matrix of CGI under different strains, strain rates, and deformation temperatures are analyzed by electron backscatter diffraction technology, and the stored energy under each deformation condition is calculated. Results show that the proportion and amount of low-angle grain boundaries and the average GNDs density increase with the increase of strain and strain rate and decreased first and then increased with an increase in deformation temperature. The increase in strain and strain rate and the decrease in deformation temperature contribute to the accumulation of stored energy, which show similar variation trends to those of GNDs density. The parameters in the stress–strain relationship model are solved according to the stored energy under different deformation conditions. The consistency between the predicted results from the proposed stress–strain relationship and the experimental results shows that the evolution of stored energy can accurately predict the stress–strain relationship of CGI.

  • RESEARCH ARTICLE
    Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications
    Fatma BAYATA, Süleyman Batuhan VATAN
    Frontiers of Mechanical Engineering, 2023, 18(3): 30. https://doi.org/10.1007/s11465-023-0746-2

    This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.

  • RESEARCH ARTICLE
    Lightweight design of an electric bus body structure with analytical target cascading
    Puyi WANG, Yingchun BAI, Chuanliang FU, Cheng LIN
    Frontiers of Mechanical Engineering, 2023, 18(1): 2. https://doi.org/10.1007/s11465-022-0718-y

    Lightweight designs of new-energy vehicles can reduce energy consumption, thereby improving driving mileage. In this study, a lightweight design of a newly developed multi-material electric bus body structure is examined in combination with analytical target cascading (ATC). By proposing an ATC-based two-level optimization strategy, the original lightweight design problem is decomposed into the system level and three subsystem levels. The system-level optimization model is related to mass minimization with all the structural modal frequency constraints, while each subsystem-level optimization model is related to the sub-structural performance objective with sub-structure mass constraints. To enhance the interaction between two-level systems, each subsystem-level objective is reformulated as a penalty-based function coordinated with the system-level objective. To guarantee the accuracy of the model-based analysis, a finite element model is validated through experimental modal test. A sequential quadratic programming algorithm is used to address the defined optimization problem for effective convergence. Compared with the initial design, the total mass is reduced by 49 kg, and the torsional stiffness is increased by 17.5%. In addition, the obtained design is also validated through strength analysis.

  • REVIEW ARTICLE
    Fixturing technology and system for thin-walled parts machining: a review
    Haibo LIU, Chengxin WANG, Te LI, Qile BO, Kuo LIU, Yongqing WANG
    Frontiers of Mechanical Engineering, 2022, 17(4): 55. https://doi.org/10.1007/s11465-022-0711-5

    During the overall processing of thin-walled parts (TWPs), the guaranteed capability of the machining process and quality is determined by fixtures. Therefore, reliable fixtures suitable for the structure and machining process of TWP are essential. In this review, the key role of fixtures in the manufacturing system is initially discussed. The main problems in machining and workholding due to the characteristics of TWP are then analyzed in detail. Afterward, the definition of TWP fixtures is reinterpreted from narrow and broad perspectives. Fixture functions corresponding to the issues of machining and workholding are then clearly stated. Fixture categories are classified systematically according to previous research achievements, and the operation mode, functional characteristics, and structure of each fixture are comprehensively described. The function and execution mode of TWP fixtures are then systematically summarized and analyzed, and the functions of various TWP fixtures are evaluated. Some directions for future research on TWP fixtures technology are also proposed. The main purpose of this review is to provide some reference and guidance for scholars to examine TWP fixtures.

  • RESEARCH ARTICLE
    Fatigue and impact analysis and multi-objective optimization design of Mg/Al assembled wheel considering riveting residual stress
    Wenchao XU, Dengfeng WANG
    Frontiers of Mechanical Engineering, 2022, 17(3): 45. https://doi.org/10.1007/s11465-022-0701-7

    The multi-material assembled light alloy wheel presents an effective lightweight solution for new energy vehicles, but its riveting connection remains a problem. To address this problem, this paper proposed the explicit riveting-implicit springback-implicit fatigue/explicit impact sequence coupling simulation analysis method, analyzed the fatigue and impact performance of the punching riveting connected magnesium/aluminum alloy (Mg/Al) assembled wheel, and constructed some major evaluation indicators. The accuracy of the proposed simulation method was verified by conducting physical experiments of single and cross lap joints. The punching riveting process parameters of the assembled wheel joints were defined as design variables, and the fatigue and impact performance of the assembled wheel was defined as the optimization objective. The connection-performance integration multi-objective optimization design of the assembled wheel considering riveting residual stress was designed via Taguchi experiment, grey relational analysis, analytic hierarchy process, principal component analysis, and entropy weighting methods. The optimization results of the three weighting methods were compared, and the optimal combination of design variables was determined. The fatigue and impact performance of the Mg/Al assembled wheel were effectively improved after optimization.

  • RESEARCH ARTICLE
    Coordinated shift control of nonsynchronizer transmission for electric vehicles based on dynamic tooth alignment
    Xiaotong XU, Yutao LUO, Xue HAO
    Frontiers of Mechanical Engineering, 2021, 16(4): 887-900. https://doi.org/10.1007/s11465-021-0653-3

    Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles (EVs), but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants. To improve the swiftness of gear shifting, this paper proposes a coordinated shift control method based on the dynamic tooth alignment (DTA) algorithm for nonsynchronizer automated mechanical transmissions (NSAMTs) of EVs. After the speed difference between the sleeve (SL) and target dog gear is reduced to a certain value by speed synchronization, angle synchronization is adopted to synchronize the SL quickly to the target tooth slot’s angular position predicted by the DTA. A two-speed planetary NSAMT is taken as an example to carry out comparative simulations and bench experiments. Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method, which proves the effectiveness of the proposed coordinated shift control method with DTA.

  • RESEARCH ARTICLE
    Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization
    Jiawen YAN, Bo PAN, Yili FU
    Frontiers of Mechanical Engineering, 2022, 17(1): 3. https://doi.org/10.1007/s11465-021-0659-x

    Applying a robot system in ultrasound-guided percutaneous intervention is an effective approach for prostate cancer diagnosis and treatment. The limited space for robot manipulation restricts structure volume and motion. In this paper, an 8-degree-of-freedom robot system is proposed for ultrasound probe manipulation, needle positioning, and needle insertion. A novel parallel structure is employed in the robot system for space saving, structural rigidity, and collision avoidance. The particle swarm optimization method based on informative value is proposed for kinematic parameter identification to calibrate the parallel structure accurately. The method identifies parameters in the modified kinematic model stepwise according to parameter discernibility. Verification experiments prove that the robot system can realize motions needed in targeting. By applying the calibration method, a reasonable, reliable forward kinematic model is built, and the average errors can be limited to 0.963 and 1.846 mm for insertion point and target point, respectively.

  • FEATURE ARTICLE
    Smart product design for automotive systems
    A. Galip ULSOY
    Frontiers of Mechanical Engineering, 2019, 14(1): 102-112. https://doi.org/10.1007/s11465-019-0527-0

    Automobiles evolved from primarily mechanical to electro-mechanical, or mechatronic, vehicles. For example, carburetors have been replaced by fuel injection and air-fuel ratio control, leading to order of magnitude improvements in fuel economy and emissions. Mechatronic systems are pervasive in modern automobiles and represent a synergistic integration of mechanics, electronics and computer science. They are smart systems, whose design is more challenging than the separate design of their mechanical, electronic and computer/control components. In this review paper, two recent methods for the design of mechatronic components are summarized and their applications to problems in automotive control are highlighted. First, the combined design, or co-design, of a smart artifact and its controller is considered. It is shown that the combined design of an artifact and its controller can lead to improved performance compared to sequential design. The coupling between the artifact and controller design problems is quantified, and methods for co-design are presented. The control proxy function method, which provides ease of design as in the sequential approach and approximates the performance of the co-design approach, is highlighted with application to the design of a passive/active automotive suspension. Second, the design for component swapping modularity (CSM) of a distributed controller for a smart product is discussed. CSM is realized by employing distributed controllers residing in networked smart components, with bidirectional communication over the network. Approaches to CSM design are presented, as well as applications of the method to a variable-cam-timing engine, and to enable battery swapping in a plug-in hybrid electric vehicle.

  • RESEARCH ARTICLE
    Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods
    Zheng-Dong MA
    Frontiers of Mechanical Engineering, 2018, 13(3): 442-459. https://doi.org/10.1007/s11465-018-0488-8

    Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson’s ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

  • RESEARCH ARTICLE
    Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics
    Keqiang LI, Feng GAO, Shengbo Eben LI, Yang ZHENG, Hongbo GAO
    Frontiers of Mechanical Engineering, 2018, 13(3): 354-367. https://doi.org/10.1007/s11465-018-0486-x

    This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range. With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.

  • RESEARCH ARTICLE
    Vehicle roll stability control with active roll-resistant electro-hydraulic suspension
    Lijun XIAO, Ming WANG, Bangji ZHANG, Zhihua ZHONG
    Frontiers of Mechanical Engineering, 2020, 15(1): 43-54. https://doi.org/10.1007/s11465-019-0547-9

    This study examines roll stability control for vehicles with an active roll-resistant electro-hydraulic suspension (RREHS) subsystem under steering maneuvers. First, we derive a vehicle model with four degrees of freedom and incorporates yaw and roll motions. Second, an optimal linear quadratic regulator controller is obtained in consideration of dynamic vehicle performance. Third, an RREHS subsystem with an electric servo-valve actuator is proposed, and the corresponding dynamic equations are obtained. Fourth, field experiments are conducted to validate the performance of the vehicle model under sine-wave and double-lane-change steering maneuvers. Finally, the effectiveness of the active RREHS is determined by examining vehicle responses under sine-wave and double-lane-change maneuvers. The enhancement in vehicle roll stability through the RREHS subsystem is also verified.

  • RESEARCH ARTICLE
    Characterisation of a microwave induced plasma torch for glass surface modification
    Adam BENNETT, Nan YU, Marco CASTELLI, Guoda CHEN, Alessio BALLERI, Takuya URAYAMA, Fengzhou FANG
    Frontiers of Mechanical Engineering, 2021, 16(1): 122-132. https://doi.org/10.1007/s11465-020-0603-5

    Microwave induced plasma torches find wide applications in material and chemical analysis. Investigation of a coaxial electrode microwave induced plasma (CE–MIP) torch is conducted in this study, making it available for glass surface modification and polishing. A dedicated nozzle is designed to inject secondary gases into the main plasma jet. This study details the adaptation of a characterisation process for CE–MIP technology. Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode, where the microwave energy couples with the gas to generate the plasma jet. Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it. The CE–MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.

  • RESEARCH ARTICLE
    Effects of sheet thickness and material on the mechanical properties of flat clinched joint
    Chao CHEN, Huiyang ZHANG, Shengdun ZHAO, Xiaoqiang REN
    Frontiers of Mechanical Engineering, 2021, 16(2): 410-419. https://doi.org/10.1007/s11465-020-0618-y

    The flat clinching process is attracting a growing attention in the joining field of lightweight materials because it avoids the geometric protrusion that appears in the conventional clinching process. In this paper, the effects of sheet thickness and material on the mechanical properties of the clinched joint were studied. Al1060 and Al2024 sheets with 2 mm thickness were employed to develop the clinched joint by using different material configurations, and Al1060 sheets with 2.5- and 1.5-mm thicknesses were used to produce the clinched joint by using different thickness configurations. The clinched joints using various sheet configurations were sectioned, and dimensional analysis was conducted. Cross-tensile and shearing tests were carried out to analyze the mechanical properties of the clinched joint, including tensile strength, shearing strength, and absorbed energy. In addition, the failure modes of the clinched joints were discussed. Results indicated that the clinched joint with a stiff top sheet had increased static strength regardless of the test type. The clinched joint with a thick top sheet demonstrated lower static strength than the joint with a thick bottom sheet in the cross-tensile test. However, this result was reversed in the shearing tests. The flat clinching process has a great potential in joining dissimilar and various thickness materials.

  • RESEARCH ARTICLE
    Microstructure investigation of dynamic recrystallization in hard machining: From thermodynamic irreversibility perspective
    Binxun LI, Xinzhi ZHANG, Song ZHANG
    Frontiers of Mechanical Engineering, 2021, 16(2): 315-330. https://doi.org/10.1007/s11465-020-0612-4

    The drastically changed thermal, mechanical, and chemical energies within the machined surface layer during hard machining tend to initiate microstructural alteration. In this paper, attention is paid to the introduction of thermodynamic potential to unravel the mechanism of microstructure evolution. First, the thermodynamic potential-based model expressed by the Helmholtz free energy was proposed for predicting the microstructure changes of serrated chip and the machined surface layer. Second, the proposed model was implemented into a validated finite element simulation model for cutting operation as a user-defined subroutine. In addition, the predicted irreversible thermodynamic state change in the deformation zones associated with grain size, which was reduced to less than 1 mm from the initial size of 1.5 mm on the machined surface, was provided for an in-depth explanation. The good consistency between the simulated results and experimental data validated the efficacy of the developed model. This research helps to provide further insight into the microstructure alteration during metal cutting.