RESEARCH ARTICLE

Self-motions of 3-RPS manipulators

  • Josef SCHADLBAUER 1 ,
  • Manfred L. HUSTY , 1 ,
  • Stéphane CARO 2 ,
  • Philippe WENGERY 2
Expand
  • 1. Institute for Basic Sciences in Engineering, Unit for Geometry and CAD, University of Innsbruck, Innsbruck 6020, Austria
  • 2. Institut de Recherche en Communications et Cybernétique de Nantes, UMR CNRS 6597, France

Received date: 19 Nov 2012

Accepted date: 24 Dec 2012

Published date: 05 Mar 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Recently a complete kinematic description of the 3-RPS parallel manipulator was obtained using algebraic constraint equations. It turned out that the workspace splits into two components describing two kinematically different operation modes. In this paper the algebraic description is used to give a complete analysis of all possible self-motions of this manipulator in both operation modes. Furthermore it is shown that a transition from one operation mode into the other in a self-motion is possible.

Cite this article

Josef SCHADLBAUER , Manfred L. HUSTY , Stéphane CARO , Philippe WENGERY . Self-motions of 3-RPS manipulators[J]. Frontiers of Mechanical Engineering, 2013 , 8(1) : 62 -69 . DOI: 10.1007/s11465-013-0366-3

1
Tsai L W. Robot Analysis. Hoboken: John Wiley & Sons, Inc., 1999

2
Gallardo J, Orozco H, Rico J, Aguilar C, Perez L. Acceleration analysis of 3-RPS parallel manipulators by means of screw theory. In: Ryu J H, ed. Parallel Manipulators, New Developments. I-Tech Education and Publishing, 2008

3
Hunt K H. Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanisms Transmissions and Automation in Design, 1983, 105(4): 705-712

DOI

4
Bonev I A. Direct kinematics of zero-torsion parallel mechanisms. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, 3851-3856

5
Huang Z, Wang J, Fang Y F. Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mechanism and Machine Theory, 2002, 37(2): 229-240

DOI

6
Basu D, Ghosal A. Singularity analysis of platform-type multi-loop spatial mechanisms. Mechanism and Machine Theory, 1997, 32(3): 375-389

DOI

7
Schadlbauer J, Walter D, Husty M L. A complete analysis of the 3-RPS manipula-tor. In: Bandyopadhyay G K S, Ramu P eds. Machines and Mechanisms. Narosa Publishing House, 2011, 410-419

8
Karger A. Self-motions of 6-3 Stewart-Gough type parallel manipulators. Advances in Robot Kinematics: Motion in Man and Machine, 2010, 359-366

9
Husty M L, Pfurner M, Schröcker H P, Brunnthaler K. Algebraic methods in mechanism analysis and synthesis. Robotica, 2007, 25(06): 661-675

DOI

10
Husty M L, Schröcker H P. Kinematics and algebraic geometry. 21st Century Kinematics, 2013, 85-123

11
1.Pfurner M. Analysis of spatial serial manipulators using kine-matic mapping, Dissertation for the Doctoral Degree. Innsbruck: University of Innsbruck, 2006

12
Husty M L, Karger A, Sachs H, Steinhilper W. Kinematik und Robotik, Springer, 1997

Outlines

/