3D-printed self-healing, biodegradable materials and their applications

  • Yu LI 1,2,3 ,
  • Guangmeng MA 1,2,3 ,
  • Fawei GUO 1,2,3 ,
  • Chunyi LUO 2,3 ,
  • Han WU 2,3 ,
  • Xin LUO 2,3 ,
  • Mingtao ZHANG 1,2,3 ,
  • Chenyun WANG 4,5 ,
  • Qingxin JIN 1,2,3 ,
  • Yu LONG , 1,2,3
Expand
  • 1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China
  • 2. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
  • 3. Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
  • 4. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
  • 5. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
longyu@gxu.edu.cn

Received date: 29 Dec 2023

Accepted date: 23 Feb 2024

Published date: 15 Jun 2024

Copyright

2024 Higher Education Press

Abstract

3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods. However, 3D-printed devices are susceptible to failure as a result of minuscule structural impairments, thereby impacting their overall durability. The utilization of self-healing, biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices, thereby expanding the application prospects for such devices. Nevertheless, enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes. This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials. First, it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques, discussing their printability, material properties, and factors that influence print quality. Then, it explores practical applications of self-healing and biodegradable 3D printing technology in depth. Finally, it critically offers practical perspectives on this topic.

Cite this article

Yu LI , Guangmeng MA , Fawei GUO , Chunyi LUO , Han WU , Xin LUO , Mingtao ZHANG , Chenyun WANG , Qingxin JIN , Yu LONG . 3D-printed self-healing, biodegradable materials and their applications[J]. Frontiers of Mechanical Engineering, 2024 , 19(3) : 17 . DOI: 10.1007/s11465-024-0787-1

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFB4601601), the Key R&D Program of Guangxi Province, China (Grant No. GKAB23026101), and Guangxi Natural Science Foundation, China (Grant No. 2023GXNSFBA026287).

Conflict of Interest

The authors declare that they have no conflict of interest.
1
Elhadad A A, Rosa-Sainz A, Cañete R, Peralta E, Begines B, Balbuena M, Alcudia A, Torres Y. Applications and multidisciplinary perspective on 3D printing techniques: recent developments and future trends. Materials Science and Engineering R: Reports, 2023, 156: 100760

DOI

2
Layani M, Wang X F, Magdassi S. Novel materials for 3D printing by photopolymerization. Advanced Materials, 2018, 30(41): 1706344

DOI

3
Chen Z, Li J F, Li T Z, Fan T J, Meng C L, Li C Z, Kang J L, Chai L X, Hao Y B, Tang Y X, Al-Hartomy O A, Wageh S, Al-Sehemi A G, Luo Z G, Yu J T, Shao Y H, Li D F, Feng S, Liu W J, He Y Q, Ma X P, Xie Z J, Zhang H. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 2022, 9(8): nwac104

DOI

4
Wu H, Fahy W P, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo J H. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020, 111: 100638

DOI

5
Martin J H, Yahata B D, Hundley J M, Mayer J A, Schaedler T A, Pollock T M. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365–369

DOI

6
Sahasrabudhe H, Bandyopadhyay A. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 1–11

DOI

7
Kaufmann N, Imran M, Wischeropp T M, Emmelmann C, Siddique S, Walther F. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Physics Procedia, 2016, 83: 918–926

DOI

8
Rakoczy Ł, Grudzień-Rakoczy M, Cygan R, Rutkowski B, Kargul T, Dudziak T, Rząd E, Milkovič O, Zielińska-Lipiec A. Characterization of the as-cast microstructure and selected properties of the X-40 Co-based superalloy produced via lost-wax casting. Archives of Civil and Mechanical Engineering, 2022, 22(3): 143

DOI

9
Weems A C, Pérez-Madrigal M M, Arno M C, Dove A P. 3D printing for the clinic: examining contemporary polymeric biomaterials and their clinical utility. Biomacromolecules, 2020, 21(3): 1037–1059

DOI

10
Jia Z J, Xu X X, Zhu D H, Zheng Y F. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134: 101072

DOI

11
Owen D, Hickey J, Cusson A, Ayeni O I, Rhoades J, Deng Y F, Zhang Y, Wu L M, Park H, Hawaldar N, Raikar P P, Jung Y, Zhang J. 3D printing of ceramic components using a customized 3D ceramic printer. Progress in additive manufacturing, 2018, 3: 3–9

DOI

12
Graf D, Jung J, Hanemann T. Formulation of a ceramic ink for 3D inkjet printing. Micromachines, 2021, 12(9): 1136

DOI

13
Wang X M, Gao D, Su F, Zheng Y T, Li X, Liu Z Y, Liu C Y, Wang P, Peng D F, Chen Z W. Photopolymerization 3D printing of luminescent ceramics. Additive Manufacturing, 2023, 73: 103695

DOI

14
Dickson A N, Ross K A, Dowling D P. Additive manufacturing of woven carbon fibre polymer composites. Composite Structures, 2018, 206: 637–643

DOI

15
Idumah C I. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polymers & Polymer Composites, 2021, 29(4): 246–258

DOI

16
Weng Z X, Wang J L, Senthil T, Wu L X. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 2016, 102: 276–283

DOI

17
Chen Z, Wu C S, Yuan Y X, Xie Z J, Li T Z, Huang H, Li S, Deng J F, Lin H L, Shi Z, Li C Z, Hao Y B, Tang Y X, You Y H, Al-Hartomy O A, Wageh S, Al-Sehemi A G, Lu R T, Zhang L, Lin X C, He Y Q, Zhao G J, Li D F, Zhang H. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. Journal of Nanobiotechnology, 2023, 21(1): 141

DOI

18
Zheng F, Chen Z, Li J F, Wu R, Zhang B, Nie G H, Xie Z J, Zhang H. A highly sensitive CRISPR-empowered sSurface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Advanced Science, 2022, 9(14): 2105231

DOI

19
YangY, Ding X c, UrbanM W. Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015, 49–50: 34–59 10.1016/j.progpolymsci.2015.06.001

20
Aïssa B, Therriault D, Haddad E, Jamroz W. Self-healing materials systems: overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012, 2012: 854203

DOI

21
Heiden A, Preninger D, Lehner L, Baumgartner M, Drack M, Woritzka E, Schiller D, Gerstmayr R, Hartmann F, Kaltenbrunner M. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Science Robotics, 2022, 7(63): eabk2119

DOI

22
Wu Y C, Fei M, Chen T T, Li C, Wu S Y, Qiu R H, Liu W D. Photocuring three-dimensional printing of thermoplastic polymers enabled by hydrogen bonds. ACS Applied Materials & Interfaces, 2021, 13(19): 22946–22954

DOI

23
Li X P, Yu R, He Y Y, Zhang Y, Yang X, Zhao X J, Huang W. Self-healing polyurethane elastomers based on a disulfide Bond by digital light processing 3D printing. ACS Macro Letters, 2019, 8(11): 1511–1516

DOI

24
Almutairi M D, Aria A I, Thakur V K, Khan M A. Self-healing mechanisms for 3D-printed polymeric structures: from lab to reality. Polymers, 2020, 12(7): 1534

DOI

25
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539

DOI

26
Chimene D, Kaunas R, Gaharwar A K. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Advanced Materials, 2020, 32(1): 1902026

DOI

27
Li J H, Wu C T, Chu P K, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Materials Science and Engineering R: Reports, 2020, 140: 100543

DOI

28
Ge G, Wang Q, Zhang Y Z, Alshareef H N, Dong X C. 3D printing of hydrogels for stretchable ionotronic devices. Advanced Functional Materials, 2021, 31(52): 2107437

DOI

29
Dadbakhsh S, Verbelen L, Vandeputte T, Strobbe D, Van Puyvelde P, Kruth J P. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Physics Procedia, 2016, 83: 971–980

DOI

30
Verbelen L, Dadbakhsh S, Van den Eynde M, Strobbe D, Kruth J P, Goderis B, Van Puyvelde P. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Additive Manufacturing, 2017, 15: 12–19

DOI

31
Yuan S Q, Shen F, Bai J M, Chua C K, Wei J, Zhou K. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Materials & Design, 2017, 120: 317–327

DOI

32
Han D, Lee H. Recent advances in multi-material additive manufacturing: methods and applications. Current Opinion in Chemical Engineering, 2020, 28: 158–166

DOI

33
Wickramasinghe S, Do T, Tran P. FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers, 2020, 12(7): 1529

DOI

34
Berry D R, Cortés-Guzmán K P, Durand-Silva A, Perera S D, Remy A K, Yan Q, Smaldone R A. Supramolecular tools for polymer additive manufacturing. MRS Communications, 2021, 11(2): 146–156

DOI

35
Bao Y Y. Recent trends in advanced photoinitiators for vat photopolymerization 3D printing. Macromolecular Rapid Communications, 2022, 43(14): 2200202

DOI

36
Roppolo I, Caprioli M, Pirri C F, Magdassi S. 3D printing of self-healing materials. Advanced Materials, 2024, 36(9): 2305537

DOI

37
Guan L Z, Fan J B, Chan X Y, Le Ferrand H. Continuous 3D printing of microstructured multifunctional materials. Additive Manufacturing, 2023, 62: 103373

DOI

38
Li Z H, Zhao Y, Wang Z H, Ren M, Wang X G, Liu H, Lin Q, Wang J C. Engineering multifunctional hydrogel-integrated 3D printed bioactive prosthetic interfaces for osteoporotic osseointegration. Advanced Healthcare Materials, 2022, 11(11): 2102535

DOI

39
Ashammakhi N, Hernandez A L, Unluturk B D, Quintero S A, de Barros N R, Hoque Apu E, Bin Shams A, Ostrovidov S, Li J, Contag C, Gomes A S, Holgado M. Biodegradable implantable sensors: materials design, fabrication, and applications. Advanced Functional Materials, 2021, 31(49): 2104149

40
Bijalwan V, Rana S, Yun G J, Singh K P, Jamil M, Schlögl S. 3D printing of covalent adaptable networks: overview, applications and future prospects. Polymer Reviews, 2024, 64(1): 36–79

DOI

41
Wang H B, Zhu H, Fu W G, Zhang Y Y, Xu B, Gao F, Cao Z Q, Liu W G. A high strength self-healable antibacterial and anti-inflammatory supramolecular polymer hydrogel. Macromolecular Rapid Communications, 2017, 38(9): 1600695

DOI

42
Li X H, Zhang H Z, Zhang P, Yu Y. A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chemistry of Materials, 2018, 30(11): 3752–3758

DOI

43
Sun S J, Fei G X, Wang X R, Xie M, Guo Q F, Fu D H, Wang Z H, Wang H, Luo G X, Xia H S. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing. Chemical Engineering Journal, 2021, 412: 128675

DOI

44
Yuan T Y, Zhang L S, Li T, Tu R W, Sodano H A. 3D printing of a self-healing, high strength, and reprocessable thermoset. Polymer Chemistry, 2020, 11(40): 6441–6452

DOI

45
Xu H, Zhang L, Cai J. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204

DOI

46
Li F, Xu Z, Hu H, Kong Z, Chen C, Tian Y, Zhang W, Ying W, Zhang R, Zhu J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chemical Engineering Journal, 2021, 410: 128363

DOI

47
Song K H, Highley C B, Rouff A, Burdick J A. Complex 3D-printed microchannels within cell-biodegradable hydrogels. Advanced Functional Materials, 2018, 28(31): 1801331

DOI

48
Fukuda K, Shimoda M, Sukegawa M, Nobori T, Lehn J M. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chemistry, 2012, 14(10): 2907–2911

DOI

49
Wen J, Jia Z Y, Zhang X P, Pan M W, Yuan J F, Zhu L. Tough, thermo-responsive, biodegradable and fast self-healing polyurethane hydrogel based on microdomain-closed dynamic bonds design. Materials Today Communications, 2020, 25: 101569

DOI

50
Yan J X, Wang Y, Zhang X, Zhao X L, Ma J Z, Pu X Y, Wang Y G, Ran F, Wang Y L, Leng F F, Zhang W J. Snakegourd root/astragalus polysaccharide hydrogel preparation and application in 3D printing. International Journal of Biological Macromolecules, 2019, 121: 309–316

DOI

51
Xu H, Zhang L, Cai J. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204

DOI

52
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539

DOI

53
Liu Y, Wong C W, Chang S W, Hsu S H. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomaterialia, 2021, 122: 211–219

DOI

54
Liguori A, Subramaniyan S, Yao J G, Hakkarainen M. Photocurable extended vanillin-based resin for mechanically and chemically recyclable, self-healable and digital light processing 3D printable thermosets. European Polymer Journal, 2022, 178: 111489

DOI

55
Grosjean M, Guth L, Déjean S, Paniagua C, Nottelet B. Dynamic and degradable imine-based networks for 3D-printing of soft elastomeric self-healable devices. Advanced Materials Interfaces, 2023, 10(17): 2300066

DOI

56
Liu X, Zhang E, Liu J, Qin J, Wu M, Yang C, Liang L. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chemical Engineering Journal, 2023, 454: 139992

DOI

57
Xu H, Tu J, Ji J, Liang L, Li H Z, Li P Y, Zhang X Z, Gong Q Y, Guo X D. Ultra-high-strength self-healing supramolecular polyurethane based on successive loose hydrogen-bonded hard segment structures. European Polymer Journal, 2022, 177: 111437

DOI

58
Huang J R, Gong Z, Chen Y K. A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. Polymer, 2022, 242: 124569

DOI

59
Bauhuber S, Hozsa C, Breunig M, Göpferich A. Delivery of nucleic acids via disulfide-based carrier systems. Advanced Materials, 2009, 21(32‒33): 3286–3306

DOI

60
Li X P, Yu R, He Y Y, Zhang Y, Yang X, Zhao X J, Huang W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Letters, 2019, 8(11): 1511–1516

DOI

61
Miao J T, Ge M Y, Peng S Q, Zhong J, Li Y W, Weng Z X, Wu L X, Zheng L H. Dynamic imine bond-based shape memory polymers with permanent shape reconfigurability for 4D printing. ACS Applied Materials & Interfaces, 2019, 11(43): 40642–40651

DOI

62
Kuang X, Wu J T, Chen K J, Zhao Z A, Ding Z, Hu F J Y, Fang D N, Qi H J. Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, 2019, 5(5): eaav5790

DOI

63
Yimyai T, Pena-Francesch A, Crespy D. Transparent and self-healing elastomers for reconfigurable 3D materials. Macromolecular Rapid Communications, 2022, 43(23): 2200554

DOI

64
Zheng M Y, Guo Q Q, Yin X Y, Getangama N N, de Bruyn J R, Xiao J F, Bai Y, Liu M, Yang J. Direct ink writing of recyclable and in situ repairable photothermal polyurethane for sustainable 3D printing development. Journal of Materials Chemistry A, 2021, 9(11): 6981–6992

DOI

65
Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333): 62–65

DOI

66
Robinson L L, Self J L, Fusi A D, Bates M W, Read de Alaniz J, Hawker C J, Bates C M, Sample C S. Chemical and mechanical tunability of 3D-printed dynamic covalent networks based on boronate esters. ACS Macro Letters, 2021, 10(7): 857–863

DOI

67
Brooks W L A, Sumerlin B S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chemical reviews, 2016, 116(3): 1375–1397

DOI

68
Pettignano A, Grijalvo S, Häring M, Eritja R, Tanchoux N, Quignard F, Díaz Díaz D. Boronic acid-modified alginate enables direct formation of injectable, self-healing and multistimuli-responsive hydrogels. Chemical communications, 2017, 53(23): 3350–3353

DOI

69
Liu Z, Xiao D S, Liu G C, Xiang H P, Rong M Z, Zhang M Q. Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer. Progress in Organic Coatings, 2021, 159: 106450

DOI

70
Seong M, Kondaveeti S, Choi G, Kim S, Kim J, Kang M S, Jeong H E. 3D printable self-adhesive and self-healing ionotronic hydrogels for wearable healthcare devices. ACS Applied Materials & Interfaces, 2023, 15(8): 11042–11052

DOI

71
Jin Y H, Yu C, Denman R J, Zhang W. Recent advances in dynamic covalent chemistry. Chemical Society Reviews, 2013, 42(16): 6634–6654

DOI

72
Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968

DOI

73
Van Zee N J, Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science, 2020, 104: 101233

DOI

74
Fei M, Liu T, Zhao B M, Otero A, Chang Y C, Zhang J W. From glassy plastic to ductile elastomer: vegetable oil-based UV-curable vitrimers and their potential use in 3D printing. ACS Applied Polymer Materials, 2021, 3(5): 2470–2479

DOI

75
Rossegger E, Höller R, Reisinger D, Strasser J, Fleisch M, Griesser T, Schlögl S. Digital light processing 3D printing with thiol–acrylate vitrimers. Polymer Chemistry, 2021, 12(5): 639–644

DOI

76
Kang F F, Yang Y, Wang W P, Li Z B. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding. European Polymer Journal, 2023, 184: 111794

DOI

77
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539

DOI

78
Guo B B, Ji X Z, Chen X T, Li G, Lu Y G, Bai J M. A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing. Virtual and Physical Prototyping, 2020, 15: 520–531

DOI

79
Guo B B, Zhang J S, Ananth K P, Zhao S, Ji X Z, Bai J M. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A: Applied Science and Manufacturing, 2020, 133: 105863

DOI

80
Wu Y C, Zeng Y, Chen Y Z, Li C, Qiu R H, Liu W D. Photocurable 3D printing of high toughness and self-healing hydrogels for customized wearable flexible sensors. Advanced Functional Materials, 2021, 31(52): 2107202

DOI

81
Gang F L, Yan H, Ma C Y, Jiang L, Gu Y Y, Liu Z Y, Zhao L Y, Wang X M, Zhang J W, Sun X D. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chemical Communications, 2019, 55(66): 9801–9804

DOI

82
Darabi M A, Khosrozadeh A, Mbeleck R, Liu Y Q, Chang Q, Jiang J Z, Cai J, Wang Q, Luo G X, Xing M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Advanced Materials, 2018, 30(4): 1705922

DOI

83
Teyssandier J, Feyter S D, Mali K S. Host‒guest chemistry in two-dimensional supramolecular networks. Chemical Communications, 2016, 52(77): 11465–11487

DOI

84
Highley C B, Rodell C B, Burdick J A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Advanced Materials, 2015, 27(34): 5075–5079

DOI

85
Jin J H, Cai L L, Jia Y G, Liu S, Chen Y H, Ren L. Progress in self-healing hydrogels assembled by host‒guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7(10): 1637–1651

DOI

86
Wang S X, Ong P J, Liu S L, Thitsartarn W, Tan M J B H, Suwardi A, Zhu Q, Loh X J. Recent advances in host‒guest supramolecular hydrogels for biomedical applications. Chemistry An Asian Journal, 2022, 17(18): e202200608

DOI

87
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Biofunctional hydrogels based on host‒guest interactions. Polymer Journal, 2020, 52(8): 839–859

DOI

88
Kumar R, Sharma A, Singh H, Suating P, Kim H S, Sunwoo K, Shim I, Gibb B C, Kim J S. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chemical reviews, 2019, 119(16): 9657–9721

DOI

89
Lambert H, Castillo Bonillo A, Zhu Q, Zhang Y W, Lee T C. Supramolecular gating of guest release from cucurbit[7]uril using de novo design. npj Computational Materials, 2022, 8(1): 21

DOI

90
Wang Z F, An G, Zhu Y, Liu X M, Chen Y H, Wu H K, Wang Y J, Shi X T, Mao C B. 3D-printable self-healing and mechanically reinforced hydrogels with host‒guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 2019, 6(4): 733–742

DOI

91
He W Y, Zhou D, Gu H, Qu R S, Cui C Q, Zhou Y Y, Wang Y, Zhang X R, Wang Q H, Wang T M, Zhang Y M. A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromolecular Rapid Communications, 2023, 44(2): 2200553

DOI

92
Zhu G D, Hou Y, Xiang J F, Xu J, Zhao N. Digital light processing 3D printing of healable and recyclable polymers with tailorable mechanical properties. ACS Applied Materials & Interfaces, 2021, 13(29): 34954–34961

DOI

93
Gong Z, Huang J R, Cao L M, Xu C H, Chen Y K. Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Materials Chemistry and Physics, 2022, 285: 126063

DOI

94
Wang W B, Liu S Y, Liu L Y, Alfarhan S, Jin K L, Chen X F. High-speed and high-resolution 3D printing of self-healing and ion-conductive hydrogels via μCLIP. ACS Materials Letters, 2023, 5(6): 1727–1737

DOI

95
Dahlke J, Zechel S, Hager M D, Schubert U S. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Advanced Materials Interfaces, 2018, 5(17): 1800051

DOI

96
TalebianS, Mehrali M, TaebniaN, PennisiC P, Kadumudi F B, ForoughiJ, HasanyM, Nikkhah M, AkbariM, OriveG, Dolatshahi-Pirouz A. Self-healing hydrogels: the next paradigm shift in tissue engineering? Advanced Science, 2019, 6(16): 1801664 10.1002/advs.201801664

97
Clark E A, Alexander M R, Irvine D J, Roberts C J, Wallace M J, Sharpe S, Yoo J, Hague R J M, Tuck C J, Wildman R D. 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 2017, 529(1–2): 523–530

DOI

98
Guan J J, He H Y, Lee L J, Hansford D J. Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery. Small, 2007, 3(3): 412–418

DOI

99
Teo M Y, Kee S, RaviChandran N, Stuart L, Aw K C, Stringer J. RaviChandran N, Stuart L, Aw K C, Stringer J. Enabling free-standing 3D hydrogel microstructures with microreactive inkjet printing. ACS Applied Materials & Interfaces, 2020, 12(1): 1832–1839

DOI

100
Kunwar P, Xiong Z, Zhu Y, Li H Y, Filip A, Soman P. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Advanced Optical Materials, 2019, 7(21): 1900656

DOI

101
Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit A W, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. Journal of Controlled Release, 2021, 332: 367–389

DOI

102
Wang L L, Highley C B, Yeh Y C, Galarraga J H, Uman S, Burdick J A. Three-dimensional extrusion bioprinting of single-and double-network hydrogels containing dynamic covalent crosslinks. Journal of Biomedical Materials Research Part A, 2018, 106(4): 865–875

DOI

103
Zhao X, Wu H, Guo B L, Dong R N, Qiu Y S, Ma P X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122: 34–47

DOI

104
Bai S M, Zhang M Y, Huang X W, Zhang X L, Lu C H, Song J B, Yang H H. A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration. Chemical Engineering Journal, 2021, 413: 127512

DOI

105
Chen R, Zhu C Q, Xu L, Gu Y, Ren S J, Bai H, Zhou Q, Liu X, Lu S F, Bi X L, Li W D, Jia X B, Chen Z P. An injectable peptide hydrogel with excellent self-healing ability to continuously release salvianolic acid B for myocardial infarction. Biomaterials, 2021, 274: 120855

DOI

106
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1: 100008

DOI

107
Derakhshanfar S, Mbeleck R, Xu K G, Zhang X Y, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Materials, 2018, 3(2): 144–156

DOI

108
Yang Y Y, Xu L F, Wang J F, Meng Q Y, Zhong S L, Gao Y, Cui X J. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers, 2022, 283: 119161

DOI

109
Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta P K, Verma R S. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. International Journal of Biological Macromolecules, 2020, 162: 1358–1371

DOI

110
Gao Q, He Y, Fu J Z, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61: 203–215

DOI

111
Mun C U, Kim H S, Kong M, Lee K Y. Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113004

DOI

112
Tabriz A G, Douroumis D. Recent advances in 3D printing for wound healing: a systematic review. Journal of Drug Delivery Science and Technology, 2022, 74: 103564

DOI

113
Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247: 589–609

DOI

114
Yan J X, Wang Y, Zhang X, Zhao X L, Ma J Z, Pu X Y, Wang Y G, Ran F, Wang Y L, Leng F F, Zhang W J. Snakegourd root/astragalus polysaccharide hydrogel preparation and application in 3D printing. International Journal of Biological Macromolecules, 2019, 121: 309–316

DOI

115
Xu H, Zhang L, Cai J. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204

DOI

116
He J H, Xie Z Q, Yao K M, Li D F, Liu Y M, Gao Z, Lu W, Chang L Q, Yu X. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81: 105590

DOI

117
Sun S, Xu Y Z, Maimaitiyiming X. 3D printed carbon nanotube/polyaniline/gelatin flexible NH3, stress, strain, temperature multifunctional sensor. Reactive & Functional Polymers, 2023, 190: 105625

DOI

118
Lei D D, Zhang Q X, Liu N S, Su T Y, Wang L X, Ren Z Q, Zhang Z, Su J, Gao Y H. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Advanced Functional Materials, 2022, 32(10): 2107330

DOI

119
Peng X, Dong K, Wu Z Y, Wang J, Wang Z L. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. Journal of Materials Science, 2021, 56(30): 16765–16789

DOI

120
Chu T S, Wang H L, Qiu Y M, Luo H X, He B F, Wu B, Gao B B. 3D printed smart silk wearable sensors. Analyst, 2021, 146(5): 1552–1558

DOI

121
Chang Q, Darabi M A, Liu Y Q, He Y F, Zhong W, Mequanint K, Li B Y, Lu F, Xing M M Q. Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. Journal of Materials Chemistry A, 2019, 7(42): 24626–24640

DOI

122
Xiao J F, Guo Q Q, Bai Y, Zheng M Y, Sun Y, Zhang L W, Zhang D X, Yang J. “One for more” functionalization by plant-inspired polyphenols assisted 3D printing. Additive Manufacturing, 2023, 61: 103294

DOI

123
Han W B, Lee J H, Shin J, Hwang S. Advanced materials and systems for biodegradable, transient electronics. Advanced Materials, 2020, 32(51): 2002211

DOI

124
Majidi C, Kramer R, Wood R J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures, 2011, 20(10): 105017

DOI

125
Dickey M D, Chiechi R C, Larsen R J, Weiss E A, Weitz D A, Whitesides G M. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 2008, 18(7): 1097–1104

DOI

126
Yang J Y, Tang D, Ao J P, Ghosh T, Neumann T V, Zhang D G, Piskarev Y, Yu T T, Truong V K, Xie K, Lai Y, Li Y, Dickey M D. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Advanced Functional Materials, 2020, 30(36): 2002611

DOI

127
Abodurexiti A, Maimaitiyiming X. Carbon nanotubes-based 3D printing ink for multifunctional “artificial epidermis” with long-term environmental stability. Macromolecular Chemistry and Physics, 2022, 223(11): 2100486

DOI

128
Cai L, Chen G X, Su B, He M H. 3D printing of ultra-tough, self-healing transparent conductive elastomeric sensors. Chemical Engineering Journal, 2021, 426: 130545

DOI

129
Chen X H, Wang Y, Zhang S, Cui J S, Ma X Y, Tian L D, Li M Y, Bao C W, Wei Q H, Du B. 3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection. Polymer Testing, 2023, 119: 107905

DOI

130
Dong L B, Xu C J, Li Y, Huang Z H, Kang F Y, Yang Q H, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685

DOI

131
Kang W B, Zeng L, Ling S W, Yuan R X, Zhang C H. Self-healable inks permitting 3D printing of diverse systems towards advanced bicontinuous supercapacitors. Energy Storage Materials, 2021, 35: 345–352

DOI

132
Zhang H H, Qiao Y, Lu Z S. Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Applied Materials & Interfaces, 2016, 8(47): 32317–32323

DOI

133
Zhang M W, Tao X L, Yu R, He Y Y, Li X P, Chen X Y, Huang W. Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics. Journal of Materials Chemistry A, 2022, 10(22): 12005–12015

DOI

134
Li L, Wu Z, Yuan S, Zhang X B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy & Environmental Science, 2014, 7(7): 2101–2122

DOI

135
LiuL, FengY, WuW. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 2019, 410–411: 69–77 10.1016/j.jpowsour.2018.11.012

136
Rani S, Kumar N, Sharma Y. Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. Journal of Physics: Energy, 2021, 3(3): 032017

DOI

137
Long J W, Dunn B, Rolison D R, White H S. Three-dimensional battery architectures. Chemical Reviews, 2004, 104(10): 4463–4492

DOI

138
Liu Y H, Zhang A Y, Shen C F, Liu Q Z, Cao X, Ma Y Q, Chen L, Lau C, Chen T C, Wei F, Zhou C W. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530–5537

DOI

139
Liu W, Oh P, Liu X E, Lee M J, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie International Edition, 2015, 54(15): 4440–4457

DOI

140
Das M, Parathodika A R, Maji P, Naskar K. Dynamic chemistry: the next generation platform for various elastomers and their mechanical properties with self-healing performance. European Polymer Journal, 2023, 186: 111844

DOI

141
Wang Z W, Cui H J, Liu M D, Grage S L, Hoffmann M, Sedghamiz E, Wenzel W, Levkin P A. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Advanced Materials, 2022, 34(11): 2107791

DOI

142
Gomez E F, Wanasinghe S V, Flynn A E, Dodo O J, Sparks J L, Baldwin L A, Tabor C E, Durstock M F, Konkolewicz D, Thrasher C J. 3D-printed self-healing elastomers for modular soft robotics. ACS Applied Materials & Interfaces, 2021, 13(24): 28870–28877

DOI

143
Terryn S, Roels E, Brancart J, Van Assche G, Vanderborght B. Self-healing and high interfacial strength in multi-material soft pneumatic robots via reversible Diels–Alder bonds. Actuators, 2020, 9(2): 34

DOI

144
Li S, Bai H D, Liu Z, Zhang X Y, Huang C Q, Wiesner L W, Silberstein M, Shepherd R F. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7(30): eabg3677

DOI

145
Cao J, Zhou C L, Su G H, Zhang X X, Zhou T, Zhou Z H, Yang Y B. Arbitrarily 3D configurable hygroscopic robots with a covalent-noncovalent interpenetrating network and self-healing ability. Advanced Materials, 2019, 31(18): 1900042

DOI

146
Priyadarsini M, Rekha Sahoo D, Biswal T. A new generation self-healing composite materials. Materials Today: Proceedings, 2021, 47: 1229–1233

DOI

147
Shinde V V, Wang Y Y, Salek M F, Auad M L, Beckingham L E, Beckingham B S. Material design for enhancing properties of 3D printed polymer composites for target applications. Technologies, 2022, 10(2): 45

DOI

148
Zhang Y Z, Lee K H, Anjum D H, Sougrat R, Jiang Q, Kim H, Alshareef H N. MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4(6): eaat0098

DOI

149
Momeni F. N S M, Liu X, Ni J. A review of 4D printing. Materials & Design, 2017, 122: 42–79

DOI

150
González-Henríquez C M, Sarabia-Vallejos M A, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Progress in Polymer Science, 2019, 94: 57–116

DOI

151
Zhu G D, Hou Y, Xu J, Zhao N. Reprintable polymers for digital light processing 3D printing. Advanced Functional Materials, 2021, 31(9): 2007173

DOI

152
Puppi D, Chiellini F. Biodegradable polymers for biomedical additive manufacturing. Applied Materials Today, 2020, 20: 100700

DOI

153
Chen Z Q, Yang M, Ji M K, Kuang X, Qi H J, Wang T J. Recyclable thermosetting polymers for digital light processing 3D printing. Materials & Design, 2021, 197: 109189

DOI

154
Shi Q, Yu K, Kuang X, Mu X M, Dunn C K, Dunn M L, Wang T J, Jerry Qi H. Recyclable 3D printing of vitrimer epoxy. Materials Horizons, 2017, 4(4): 598–607

DOI

155
Dong L, Wang M X, Wu J J, Zhang C Y, Shi J, Oh K M, Yao L R, Zhu C H, Morikawa H. Fully biofriendly, biodegradable and recyclable hydrogels based on covalent-like hydrogen bond engineering towards multimodal transient electronics. Chemical Engineering Journal, 2023, 457: 141276

DOI

156
Ahangar P, Cooke M E, Weber M H, Rosenzweig D H. Current biomedical applications of 3D printing and additive manufacturing. Applied Sciences, 2019, 9(8): 1713

DOI

157
Zhao T T, Yu R, Li S, Li X P, Zhang Y, Yang X, Zhao X J, Wang C, Liu Z C, Dou R, Huang W. Superstretchable and processable silicone elastomers by digital light processing 3D printing. ACS Applied Materials & Interfaces, 2019, 11(15): 14391–14398

DOI

158
Liu S J, Li L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Applied Materials & Interfaces, 2017, 9(31): 26429–26437

DOI

159
Boydston A J, Cao B, Nelson A, Ono R J, Saha A, Schwartz J J, Thrasher C J. Additive manufacturing with stimuli-responsive materials. Journal of Materials Chemistry A, 2018, 6(42): 20621–20645

DOI

160
Shahbazi M, Jäger H. Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Applied Bio Materials, 2021, 4(1): 325–369

DOI

161
Ge G, Zhang Y Z, Zhang W L, Yuan W, El-Demellawi J K, Zhang P, Di Fabrizio E, Dong X C, Alshareef H N. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano, 2021, 15(2): 2698–2706

DOI

162
Joshi S, Rawat K, Karunakaran C, Rajamohan V, Mathew A T, Koziol K, Thakur K V, Balan A S S. 4D printing of materials for the future: opportunities and challenges. Applied Materials Today, 2020, 18: 100490

DOI

Outlines

/