REVIEW ARTICLE

Surgical robotics: A look-back of latest advancement and bio-inspired ways to tackle existing challenges

  • Yang LIU 1 ,
  • Jing LIU , 2
Expand
  • 1. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
  • 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 20 Oct 2012

Accepted date: 27 Oct 2012

Published date: 05 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This article is dedicated to present a review on existing challenges and latest developments in surgical robotics in attempts to overcome the obstacles lying behind. Rather than to perform an exhaustive evaluation, we would emphasize more on the new insight by digesting the emerging bio-inspired surgical technologies with potentials to revolutionize the field. Typical approaches, possible applications, advantages and technical challenges were discussed. Evolutions of surgical robotics and future trends were analyzed. It can be found that, the major difficulties in the field of surgical robots may not be properly addressed by only using conventional approaches. As an alternative, bio-inspired methods or materials may shed light on new innovations. While endeavors to deal with existing strategies still need to be made, attentions should be paid to also borrow ideas from nature.

Cite this article

Yang LIU , Jing LIU . Surgical robotics: A look-back of latest advancement and bio-inspired ways to tackle existing challenges[J]. Frontiers of Mechanical Engineering, 2012 , 7(4) : 376 -384 . DOI: 10.1007/s11465-012-0352-1

1
Reynolds W Jr. The first laparoscopic cholecystectomy. Journal of the Society of Laparoendoscopic Surgeons, 2001, 5(1): 89–94

PMID

2
Reddick E J, Olsen D O. Laparoscopic laser cholecystectomy. A comparison with mini-lap cholecystectomy. Surgical Endoscopy, 1989, 3(3): 131–133

DOI PMID

3
Soper N J, Stockmann P T, Dunnegan D L, Ashley S W. Laparoscopic cholecystectomy. The new ‘gold standard’? Archives of Surgery, 1992, 127(8): 917–921, discussion 921–923

DOI PMID

4
Friedman R L, Fallas M J, Carroll B J, Hiatt J R, Phillips E H. Laparoscopic splenectomy for ITP. Surgical Endoscopy, 1996, 10(10): 991–995

DOI PMID

5
Smith C D, Weber C J, Amerson J R. Laparoscopic adrenalectomy: New gold standard. World Journal of Surgery, 1999, 23(4): 389–396

DOI PMID

6
Soper N J, Barteau J A, Clayman R V, Ashley S W, Dunnegan D L. Comparison of early postoperative results for laparoscopic versus standard open cholecystectomy. Surgery, Gynecology & Obstetrics, 1992, 174(2): 114–118

PMID

7
Xin H, Zelek J S, Carnahan H. Laparoscopic surgery, perceptual limitations and force: A review. In: Proceedings of First Canadian Student Conference on Biomedical Computing, Ontario, Canada, 2006

8
Yamamoto T, Abolhassani N, Jung S, Okamura A M, Judkins T N. Augmented reality and haptic interfaces for robot-assisted surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8(1): 45–56

DOI PMID

9
Okamura A M. Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology, 2009, 19(1): 102–107

DOI PMID

10
Choi S B, Park J S, Kim J K, Hyung W J, Kim K S, Yoon D S, Lee W J, Kim B R. Early experiences of robotic-assisted laparoscopic liver resection. Yonsei Medical Journal, 2008, 49(4): 632–638

DOI PMID

11
Sung G T, Gill I S. Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology, 2001, 58(6): 893–898

DOI PMID

12
Arata J, Mitsuishi M, Warisawa S, Tanaka K, Yoshizawa T, Hashizume M. Development of a dexterous minimally-invasive surgical system with augmented force feedback capability. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005, 3207–3212

13
Tobergte A, Albu-Schaffer A. Direct force reflecting teleoperation with a flexible joint robot. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, USA, 2012, 4280–4287

14
Mayer H, Nagy I, Knoll A, Braun E U, Bauernschmitt R, Lange R. Haptic feedback in a telepresence system for endoscopic heart surgery. Presence (Cambridge, Mass.), 2007, 16(5): 459–470

DOI

15
Okamura A. Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial Robot: An International Journal, 2004, 31: 499–508

16
Miller A P, Peine W J, Son J S, Hammoud Z T. Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma, Italy, 2007, 2996–3001

17
Trejos A L, Jayender J, Perri M T, Naish M D, Patel R V, Malthaner R A. Robot-assisted tactile sensing for minimally invasive tumor localization. International Journal of Robotics Research, 2009, 28(9): 1118–1133

DOI

18
Box G N, Lee H J, Santos R J S, Abraham J B A, Louie M K, Gamboa A J R, Alipanah R, Deane L A, McDougall E M, Clayman R V. Rapid communication: robot-assisted NOTES nephrectomy: Initial report. Journal of Endourology, 2008, 22(3): 503–506

DOI PMID

19
Canes D, Lehman A C, Farritor S M, Oleynikov D, Desai M M. The future of NOTES instrumentation: Flexible robotics and in vivo minirobots. Journal of Endourology/Endourological Society, 2009, 23: 787–792

20
Lehman A C, Dumpert J, Wood N A, Redden L, Visty A Q, Farritor S, Varnell B, Oleynikov D. Natural orifice cholecystectomy using a miniature robot. Surgical Endoscopy, 2009, 23(2): 260–266

DOI PMID

21
Lehman A C, Wood N A, Farritor S, Goede M R, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surgical Endoscopy, 2011, 25(1): 119–123

DOI PMID

22
Wortman T D, Strabala K W, Lehman A C, Farritor S M, Oleynikov D. Laparoendoscopic single-site surgery using a multi-functional miniature in vivo robot. International Journal of Medical and Computer Assisted Surgery, 2011, 7(1): 17–21

DOI PMID

23
Wortman T D, Meyer A, Dolghi O, Lehman A C, McCormick R L, Farritor S M, Oleynikov D. Miniature surgical robot for laparoendoscopic single-incision colectomy. Surgical Endoscopy, 2012, 26(3): 727–731

DOI PMID

24
Bar-Cohen Y. Biomimetics—Biologically Inspired Technologies. Boca Raton: CRC Press, 2005

25
Pellegrino S. Deployable Structures. Vienna: Springer, 2001

26
Bar-Cohen Y. Biomimetics—Using nature to inspire human innovation. Bioinspiration & Biomimetics, 2006, 1(1): 1–12

DOI PMID

27
Wettels N, Santos V J, Johansson R, Loeb G E. Biomimetic tactile sensor array. Advanced Robotics, 2008, 22(8): 829–849

DOI

28
Fishel J A, Santos V J, Loeb G E. A robust micro-vibration sensor for biomimetic fingertips. In: Proceedings of International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona, USA, 2008, 659–663

29
López A M, Richardson R, Dehghani A, Roshan R, Jayne D, Neville A. Bio-inspiration for a miniature robot inside the abdomen. Lecture Notes in Computer Science, 2012, 7375: 380–381

DOI

30
Sleigh M A. Mechanisms of flagellar propulsion: A biologist’s view of the relation between structure, motion and fluid mechanics. Protoplasma, 1991, 164(1-3): 45–53

DOI

31
Manghi M, Schlagberger X, Netz R R. Propulsion with a rotating elastic nanorod. Physical Review Letters, 2006, 96(6): 068101

DOI PMID

32
Sherman R A, Pechter E A. Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis. Medical and Veterinary Entomology, 1988, 2(3): 225–230

DOI PMID

33
Navarro X, Krueger T B, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System, 2005, 10(3): 229–258

DOI PMID

34
Polasek K H, Hoyen H A, Keith M W, Kirsch R F, Tyler D J. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17: 428–37

35
Brill N, Polasek K, Oby E, Ethier C, Miller L, Tyler D. Nerve cuff stimulation and the effect of fascicular organization for hand grasp in nonhuman primates. In: Proceedings of 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, USA, 2009, 1557–1560

36
Ashley S. Palm-size spy planes. Mechanical Engineering, 1998, 120: 74–78

37
Visvanathan K, Gupta N K, Maharbiz M M, Gianchandani Y B. Control of locomotion in ambulatory and airborne insects using implanted thermal microstimulators. In: Proceedings of Solid-State Sensors, Actuators and Microsystems Conference, Denver, USA, 2009, 1987–1990

38
Dario P, Carrozza M C, Guglielmelli E, Laschi C, Menciassi A, Micera S, Vecchi F. Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects. IEEE Robotics & Automation Magazine, 2005, 12(2): 29–45

DOI

39
Sato H, Maharbiz M M. Recent developments in the remote radio control of insect flight. Frontiers in Neuroscience, 2010, 4: 199

DOI PMID

40
Shoji K, Akiyama Y, Suzuki M, Hoshino T, Nakamura N, Ohno H, Morishima K. Insect-mountable biofuel cell with self-circulation system. In: Proceedings of 25th IEEE International Conference on Micro Electro Mechanical Systems. Paris, France, 2012, 1249–1252

41
Takemura R, Akiyama Y. Chemical switching of jellyfish-shaped micro robot consisting only of cardiomyocyte gel. In: Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 2011, 2442–2445

42
Neal D, Asada H. Co-fabrication of live skeletal muscles as actuators in a millimeter scale mechanical system. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011, 3251–3256

43
Tian B, Liu J, Dvir T, Jin L, Tsui J H, Qing Q, Suo Z, Langer R, Kohane D S, Lieber C M.Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials, 2012, Advance Online Publication

44
Fujita H, Shimizu K, Nagamori E. Fabrication of skeletal muscle tissue from C2C12 myoblast cell towards the use as bio-actuator. Animal Cell Technology: Basics & Applied Aspects, 2010, 16: 177–183

45
Akiyama Y, Terada R, Hashimoto M, Hoshino T, Furukawa Y, Morishima K. Rod-shaped tissue engineered skeletal muscle with artificial anchors to utilize as a bio-actuator. Journal of Biomechanical Science and Engineering, 2010, 5(3): 236–244

DOI

46
Xie L, Wang Q, Liu J. Recent patents on biomedical devices and nanomaterials for hyperthermal therapy of cancer. Recent Patents on Nanomedicine, 2011, 1(1): 19–37

DOI

47
Chang H.Method and apparatus for laser medical treatment. US Patent, <patent>5298026</patent>, 1994

48
Itoh A.Ultrasound therapy system. US Patent, <patent>4757820</patent>, 1988

49
Mulier P M, Hoey M F. Method and apparatus for RF ablation andhyperthermia. US Patent, <patent>5807395</patent>, 1998

50
Yamamoto R.Microwave hyperthermia treatment apparatus and treatment system. US Patent, <patent>7250589</patent>, 2007

51
Nagler Y.Magnetic therapy. US Patent, <patent>6093143</patent>, 2000

Outlines

/