RESEARCH ARTICLE

Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis, and artificial neural network

  • Christopher John NASSAU 2 ,
  • N. Scott LITOFSKY 3 ,
  • Yuyi LIN , 2
Expand
  • 1. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
  • 2. Division of Neurological Surgery, University of Missouri, Columbia, MO 65211, USA

Received date: 10 May 2012

Accepted date: 05 Jul 2012

Published date: 05 Sep 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Subsidence, when implant penetration induces failure of the vertebral body, occurs commonly after spinal reconstruction. Anterior lumbar interbody fusion (ALIF) cages may subside into the vertebral body and lead to kyphotic deformity. No previous studies have utilized an artificial neural network (ANN) for the design of a spinal interbody fusion cage. In this study, the neural network was applied after initiation from a Taguchi L18 orthogonal design array. Three-dimensional finite element analysis (FEA) was performed to address the resistance to subsidence based on the design changes of the material and cage contact region, including design of the ridges and size of the graft area. The calculated subsidence is derived from the ANN objective function which is defined as the resulting maximum von Mises stress (VMS) on the surface of a simulated bone body after axial compressive loading. The ANN was found to have minimized the bone surface VMS, thereby optimizing the ALIF cage given the design space. Therefore, the Taguchi-FEA-ANN approach can serve as an effective procedure for designing a spinal fusion cage and improving the biomechanical properties.

Cite this article

Christopher John NASSAU , N. Scott LITOFSKY , Yuyi LIN . Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis, and artificial neural network[J]. Frontiers of Mechanical Engineering, 2012 , 7(3) : 247 -255 . DOI: 10.1007/s11465-012-0335-2

Acknowledgements

The authors would like to thank Dr. Hao Li, Associate Professor of Mechanical and Aerospace Engineering, the Departments of Biological and Mechanical and Aerospace Engineering for financial support, and members of the Nanostructured and Biomedical Materials Laboratory.
1
Bagby G W. Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics, 1988, 11(6): 931– 934

PMID

2
Cain C M, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine, 2005, 30(23): 2631–2636

DOI PMID

3
Dietl R H J, Krammer M, Kettler A, Wilke H J, Claes L, Lumenta C B. Pullout test with three lumbar interbody fusion cages. Spine, 2002, 27(10): 1029–1036

DOI PMID

4
McAfee P C. Interbody fusion cages in reconstructive operations on the spine. Journal of Bone and Joint Surgery. American Volume, 1999, 81(6): 859–880

PMID

5
Engels T A, Söntjens S H, Smit T H, Govaert L E. Time-dependent failure of amorphous polylactides in static loading conditions. Journal of Materials Science. Materials in Medicine, 2010, 21(1): 89–97

DOI PMID

6
Kandziora F, Pflugmacher R, Scholz M, Eindorf T, Schnake K J, Haas N P. Bioabsorbable interbody cages in a sheep cervical spine fusion model. Spine, 2004, 29(17): 1845–1856

DOI PMID

7
Smit T H, Engels T A, Wuisman P I, Govaert L E. Time-dependent mechanical strength of 70/30 Poly(L, DL-lactide): shedding light on the premature failure of degradable spinal cages. Spine, 2008, 33(1): 14–18

DOI PMID

8
Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U. Transforaminal lumbar interbody fusion: A safe technique with satisfactory three to five year results. European Spine Journal, 2005, 14(6): 551–558

DOI PMID

9
Adam C, Pearcy M, McCombe P. Stress analysis of interbody fusion—Finite element modelling of intervertebral implant and vertebral body. Clinical Biomechanics (Bristol, Avon), 2003, 18(4): 265–272

DOI PMID

10
Jost B, Cripton P A, Lund T, Oxland T R, Lippuner K, Jaeger P, Nolte L P. Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. European Spine Journal, 1998, 7(2): 132–141

DOI PMID

11
Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine, 2001, 26(13): 1437–1442

DOI PMID

12
Lim T H, Kwon H, Jeon C H, Kim J G, Sokolowski M, Natarajan R, An H S, Andersson G B. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine, 2001, 26(8): 951–956

DOI PMID

13
Steffen T, Tsantrizos A, Aebi M. Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine, 2000, 25(9): 1077–1084

DOI PMID

14
Steffen T, Tsantrizos A, Fruth I, Aebi M. Cages: Designs and concepts. European Spine Journal, 2000, 9(Suppl 1): S89–S94

DOI PMID

15
Pearcy M J, Evans J H, O’Brien J P. The load bearing capacity of vertebral cancellous bone in interbody fusion of the lumbar spine. Engineering in Medicine, 1983, 12(4): 183–184

DOI PMID

16
Zander T, Rohlmann A, Klöckner C, Bergmann G. Effect of bone graft characteristics on the mechanical behavior of the lumbar spine. Journal of Biomechanics, 2002, 35(4): 491–497

DOI PMID

17
Belytschko T B, Andriacchi T P, Schultz A B, Galante J O. Analog studies of forces in the human spine: computational techniques. Journal of Biomechanics, 1973, 6(4): 361–371

DOI PMID

18
Belytschko T, Kulak R F, Schultz A B, Galante J O. Finite element stress analysis of an intervertebral disc. Journal of Biomechanics, 1974, 7(3): 277–285

DOI PMID

19
Kuslich S D, Ulstrom C L, Michael C J. The tissue origin of low back pain and sciatica: A report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthopedic Clinics of North America, 1991, 22(2): 181–187

PMID

20
Linde F. Elastic and viscoelastic properties of trabecular bone by a compression testing approach. Danish Medical Bulletin, 1994, 41(2): 119–138

PMID

21
Mizrahi J, Silva M J, Keaveny T M, Edwards W T, Hayes W C. Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body. Spine, 1993, 18(Suppl 14): 2088–2096

DOI PMID

22
Fowlkes W Y, Creveling C M. Engineering methods for robust production design using Taguchi method in technology and product development. Reading: Addison-Wesley Longman, 1995

23
Rao R S, Kumar C G, Prakasham R S, Hobbs P J. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnology Journal, 2008, 3(4): 510–523

DOI PMID

24
Dar F H, Meakin J R, Aspden R M. Statistical methods in finite element analysis. Journal of Biomechanics, 2002, 35(9): 1155–1161

DOI PMID

25
Chao C K, Hsu C C, Wang J L, Lin J. Increasing bending strength of tibial locking screws: Mechanical tests and finite element analyses. Clinical Biomechanics (Bristol, Avon), 2007, 22(1): 59–66

DOI PMID

26
Chao C K, Lin J, Putra S T, Hsu C C. A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws. Journal of Biomechanical Engineering, 2010, 132(9): 091006

DOI PMID

27
Chen L H, Tai C L, Lee D M, Lai P L, Lee Y C, Niu C C, Chen W J. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskeletal Disorders, 2011, 12(1): 33

DOI PMID

28
Hou S M, Hsu C C, Wang J L, Chao C K, Lin J. Mechanical tests and finite element models for bone holding power of tibial locking screws. Clinical Biomechanics (Bristol, Avon), 2004, 19(7): 738–745

DOI PMID

29
Hsu C C, Chao C K, Wang J L, Lin J. Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance. Journal of Orthopaedic Research, 2006, 24(5): 908–916

DOI PMID

30
Hsu C C, Lin J, Chao C K. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws. Computer Methods and Programs in Biomedicine, 2011, 104(3): 341–348

DOI PMID

31
Hsu W H, Chao C K, Hsu H C, Lin J, Hsu C C. Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi methods. Medical Engineering & Physics, 2009, 31(3): 287–294

DOI PMID

32
Hsu W H, Hsu C C, Chao C K, Tsai Y H, Hsu H C. Analysis of the compressive strength and subsidence of a vertebral body cage with Taguchi methods. Journal of the Chinese Institute of Engineers, 2010, 33(4): 541–550

DOI

33
Lin C L, Yu J H, Liu H L, Lin C H, Lin Y S. Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method. Clinical Biomechanics (Bristol, Avon), 2010, 43(11): 2174–2181

PMID

34
Yang K, Teo E C, Fuss F K. Application of Taguchi method in optimization of cervical ring cage. Journal of Biomechanics, 2007, 40(14): 3251–3256

DOI PMID

35
Mitchell T M, Carbonell T J, Michalski R S, eds. Machine Learning: A Guide to Current Research. Norwell: Kluwer Academic Publishers, 1986

36
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, 2(4): 303–314

DOI

Outlines

/