1 Introduction
2 Multi-objective optimization model of the slipper/swash plate interface
2.1 Dynamics
2.2 Pressure governing equations
Tab.1 EHA pump parameters and operating conditions considered in this study |
Parameter | Value |
---|---|
Distribution radius of slippers, Rd | 0.02 m |
Piston radius, rp | 0.005 m |
Inlet pressure, pin | 5 × 105 Pa |
Outlet pressure, pout | 28 × 106 Pa |
Case drain pressure, p0 | 1×105 Pa |
Atmospheric saturation pressure | 3 × 104 Pa |
Shaft speed, n | 10000 r/min |
Swash plate angle, βs | 0.13 rad (7.5°) |
Temperature | 60 °C |
Oil density at 60 °C | 837.4 kg/m3 |
Oil kinematic viscosity at 60 °C | 10.3 mm2/s |
2.3 Simulation model
Tab.2 Parameters of multi-objective optimization model based on NSGA-II |
Parameter | Value |
---|---|
Dimple depth | 5 μm |
Number of Rop elements | 12 |
Population size | 60 |
Pareto fraction | 0.35 |
Crossover fraction | 0.8 |
Migration fraction | 0.2 |
Lower bounds | ≥ 0.1 mm |
Upper bounds | ≤ 0.2 mm |
Objectives | 1. Maximization ΔFoils |
2. Minimization Tτsz | |
3. Minimization αs | |
4. Minimization Qss |
3 Simulation results and discussion
Tab.3 Fine-meshed region positional parameter and starting shaft rotation angle φop |
Parameter | Value |
---|---|
θds | 3 rad (171.90°) |
θde | 3.19 rad (182.70°) |
Rds | 5×10−3 m |
Rde | 6.05×10−3 m |
φop | 36.83 rad (2110°) |
Tab.4 Optimal Rop with corresponding dimple shapes |
Dimple shape | Rop/mm | Shape |
---|---|---|
1 | [0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100] | Circle |
5 | [0.100, 0.108, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.103, 0.100, 0.100] | Similar to water drop |
9 | [0.185, 0.200, 0.200, 0.142, 0.179, 0.175, 0.130, 0.156, 0.200, 0.148, 0.193, 0.173] | Approximate arc-sided square |
10 | [0.185, 0.200, 0.200, 0.142, 0.179, 0.175, 0.130, 0.156, 0.200, 0.148, 0.193, 0.173] | Approximate arc-sided square |
21 | [0.100, 0.108, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.103, 0.100, 0.100] | Similar to water drop |
4 Experiment verification
4.1 Experimental scheme
4.2 Wear of the swash plate surface
4.3 Efficiencies of EHA pump prototype
Tab.5 Efficiencies and output torques of EHA prototype at 10000 r/min, 28 MPa |
EHA pump prototype equipped with | Mechanical efficiency, ηm/% | Volumetric efficiency, ηv/% | Output torque, Tsh/(N·m) |
---|---|---|---|
TSP | 87.1 | 81.1 | 18.6 |
UTSP | 85.7 | 80.3 | 18.9 |
5 Conclusions
6 Nomenclature
Abbreviations | |
CLSM | Confocal laser scanning microscope |
EHA | Electro-hydrostatic actuator |
LST | Laser surface texturing |
IDC | Inner dead center |
ODC | Outer dead center |
TSP | Textured swash plate |
UTSP | Untextured swash plate |
Variables | |
Fa | Reciprocating inertia force |
Fcs | Slipper centrifugal force |
Ff | Axial friction force between the cylinder and the piston |
Ffps | Friction force of the slipper caused by the spherical joint |
FN | Normal force produced by the swash plate of the piston‒slipper assembly |
FNy, FNz | Side force produced by the swash plate in y- and z-axis, respectively |
Foils | Load-bearing capacity force of the slipper/swash plate interface |
Foils{textured}, Foils{untextured} | Local load-bearing capacity at the textured fine-meshed and untextured regions, respectively |
Fp | Piston chamber pressure |
Fr | Spring-back force |
Fsp | Spring force in the cylinder center |
ΔFoils | Difference of local load-bearing capacity at textured region and untextured region |
h | Gap height |
Izs | Inertia moment of the slipper about the zs-axis |
lcs | Length between the center of the spherical joint and the centroid of the slipper |
n | Shaft speed |
np | Number of the piston |
p | Oil film pressure |
p0 | Case drain pressure |
pin, pout | Inlet and outlet pressures, respectively |
pops | Pocket pressure |
qout | Outlet flow |
Qss | Leakage |
r | Radius |
rj | Radius of the spherical joint |
rp | Piston radius |
rperf | Rate of changes in four optimizing targets, i.e., Foils, αs, Tτsz, and Qss |
Rd | Distribution radius of slippers |
Rds, Rde | Radial coordinate of the fine-meshed region |
Rh | Oil film radius |
Rin, Rout | Inner and outer radii of the slipper land, respectively |
Ros | Length between os and the Zsw-axis |
Rs | Length between any position (r, θ) and the Zsw-axis |
Rop | Array of the radial coordinates defining the arbitrary dimple shape |
t | Time |
Tfps | Friction torque of the slipper caused by the spherical joint |
Toilsx, Toilsy | Torques produced by the unevenly distributed pressure fields of the oil film about the xs- and ys-axis, respectively |
Tsh | Output torque of the shaft of the prototype |
Tss | Output torque of the shaft in addition to viscous friction torque of the slipper/swash plate interface |
Tτsx, Tτsy, Tτsz, Tτszg | Viscous friction torques about the xs-, ys-, zs-, and Zsw-axis, respectively |
vor | Radial velocity of the oil |
vr, vθ | Radial and circumferential velocities at any position (r, θ) of the slipper bottom, respectively |
Vs | Displacement of the pump |
αs | Tilting angle of the slipper |
βs | Swash plate angle |
η | Oil dynamic viscosity |
ηm | Mechanical efficiency |
ηv | Volumetric efficiency |
θ | Azimuth angle |
θαs | Tilting azimuth angle of the slipper |
θds, θde | Azimuth coordinate of the fine-meshed region |
ρ | Oil density |
σ | Angle between any position (r, θ)‒Osw and os‒Osw |
φ | Shaft rotation angle |
φop | Starting shaft rotation angle of the optimization process |
φs | Rotation angle of os in the Osw‒XswYswZsw system |
Rotation speed | |
Rotation speed of os about the Zsw-axis | |
Spinning speed of the slipper | |
τoθ, τor | Circumferential and radial viscous shear stresses, respectively |